
Torsten: Stan functions forpharmacometric applications
New functionality includingwithin chain parallel computation

Yi Zhang, William R. Gillespie
Metrum Research Group

yiz@metrumrg.com billg@metrumrg.com The authors would like to thank Office of Naval Research for funding this research under grant N6833518C0110.

Introduction

Stan is a widely used, open-source, probabilistic programming language and Bayesian
inference engine [3, 4]. It provides a general model specification language and uses
HMC simulation for fully Bayesian data analysis. Torsten is a library of Stan func-
tions that simplifies implementation of pharmacometric (PMX) models and extends
the range of models that may be implemented [2]. The objective of the work pre-
sented here is to improve and extend Torsten. This includes the addition of new
functions and enhancements to existing ones.
Currently Torsten provides following functions for single-subject PMXmodeling.

/* Functions for single-subject pharmacometric analysis */

matrix pmx_solve_onecpt(...) /* 1-cpt model with 1st order absorption */

matrix pmx_solve_twocpt(...) /* 2-cpt model with 1st order absorption */

matrix pmx_solve_linode(...) /* linear ODE model specified through coefficient matrix */

matrix pmx_solve_adams(...) /* general ODE model solved using Adams-Moulton scheme */

matrix pmx_solve_bdf(...) /* general ODE model solved using BDF scheme */

matrix pmx_solve_rk45(...) /* general ODE model solved using Runge-Kutta scheme */

matrix pmx_solve_onecpt_bdf(...) /* general ODE model coupled with 1-cpt model */

matrix pmx_solve_onecpt_rk45(...) /* general ODE model coupled with 2-cpt model */

matrix pmx_solve_twocpt_bdf(...) /* general ODE model coupled with 1-cpt model */

matrix pmx_solve_twocpt_rk45(...) /* general ODE model coupled with 2-cpt model */

Torsten’s ODE integrators

To facilitate design for within-chain parallelization, Torsten v0.86 added its own
implementation of ODE integrators

real[,] pmx_integrate_ode_adams(...);

real[,] pmx_integrate_ode_bdf(...);

real[,] pmx_integrate_ode_rk45(...);

based on the same backend libraries(Odeint & CVODES [5]) as Stan’s, and they share
the same signature. Additionally, Torsten’s ODE integrators allow solution times ts
to be parameters. Table 1-3 show performance comparison of the integrators based
on two ODE systems(Torsten v0.86, Stan v2.19.1)

integrator run 1 run 2 run 3
integrate_ode_bdf 1.41 1.47 1.42
pmx_integrate_ode_bdf 1.16 1.18 1.15

Table 1: wall time(s) of solving a chemical kinetics ODE using BDF integrators

integrator run 1 run 2 run 3
integrate_ode_adams 2.09 2.11 2.07
pmx_integrate_ode_adams 1.65 1.66 1.64

Table 2: wall time(s) of solving a chemical kinetics ODE using Adams integrators

integrator run 1 run 2 run 3
integrate_ode_adams 8.12 8.75 8.22
pmx_integrate_ode_adams 7.25 7.92 7.24

Table 3: wall time(s) of solving Lorenz system ODE using Adams integrators

Torsten’s within-chain parallel integrators and solvers

Torsten now includes versions of Stans ordinary differential equation (ODE) solvers
that have been revised to improve performance and provide MPI-based parallel
computing,We have implemented new population functions that calculate themodel
states for a group of individuals in a single function call. Those functions also em-
ploy MPI to distribute those calculations over multiple processors, thus providing
efficient within chain parallel computation.
Torsten provides an alternative to Stan’s map_rect framework that avoids use of
boost.mpi and serialization, simplifies user programming tasks by providing a sim-
plified function signature and automating computation load distribution. Unlike
map_rect, Torsten’s parallel computing capability is available through functions for
specific heavy-lifting tasks. Currently we focus on tasks involving numerical solu-
tion of ODEs.

ODE group integrators

The ODE group integrators solve a set of systems governed by a same ODE but with
different parameters/data. Function arguments y0, theta, x_r, and x_i are 2D ar-
rays with 1st dimension indicating subject within the group. ts is a ragged array
for each subject’s solution time, and len consists of length of each subject’s record
in ts.
matrix pmx_integrate_ode_group_adams(...);

matrix pmx_integrate_ode_group_bdf(...);

matrix pmx_integrate_ode_group_rk45(...);

/* all three functions share same signature */

matrix pmx_integrate_ode_group_rk45(ODE_system, real[,] y0, real t0, int[] len, real[] ts, real[,] theta, real[,]

x_r, int[,] x_i, real rtol, real atol, int max_step);↪→

We demonstrate the MPI performance of the group integrators using two tests.

• Test 1: Neutropenia PKPD ODE group of size 1000 solved using BDF group inte-
grator. Each ODE is of size 8 and has 9 parameters.

• Test 2: predator-prey model parameter inference for a set of 16 Lotka-Volterra
equations, with the ODE group solved using RK45 integrator.

●

●

●

●

●

●

●
●

●

●

2

8

32

1 2 4 8 16 32 64 128 256 512

n_processor

sp
ee

du
p

Speedup of test 1

●

●

●

●

●

1

2

4

1 2 4 8 16

n_processor

sp
ee

du
p

Speedup of test 2

Pharmacometric population solvers

matrix pmx_solve_group_adams(...);

matrix pmx_solve_group_bdf(...);

matrix pmx_solve_group_rk45(...);

/* all three functions share same signature */

matrix pmx_solve_group_rk45(ODE_system, int nCmt, int[] len, real[] time, real[] amt, real[] rate, real[] ii, int[]

evid, int[] cmt, real[] addl, int[] ss, real[] theta, real[] biovar, real[] tlag, real rel_tol, real abs_tol,

int max_step);

↪→

↪→

Similar to single-subject solvers, the group/population PMX solvers use a model
specification and data format based on NONMEM®/NMTRAN/PREDPP conven-
tions. Function arguments specify dosing events for a population using ragged ar-
rays, with each subject’s data located through array len that contains the subject
record length.
We demonstrate the MPI performance of the population PMX solvers using two

tests.

• Test 3: Two-compartment model with first-order absorption among a population
of 8. Stan model parameters are the PK model parameters for each subject. The
population PK model is solved numerical using pmx_solve_group_bdf.

• Test 4: Parametric time-to-event model for the time to the first grade 2+ periph-
eral neuropathy event in 60 patients treated with an antibody-drug conjugate de-
livering monomethyl auristatin E. The hazard ODE system is of size 3 and has 5
parameters.

●

●

●

●

1

2

4

2 4 8

n_processor

sp
ee

du
p

Speedup of test 3

●

●

●

●

●

●

●

1

2

4

2 4 8 16 32 64

n_processor

sp
ee

du
p

Speedup of test 4

Interface to external PDE libraries

We have also implemented interface to external PDE libraries for applications that
involve PDE parameter inference. The methodology has been tested using multiple
PDE libraries. Example on the right shows Darcy’s flow velocity in an inference
model for porosity k of in irregular flow region, using Torsten + MFEM [1]. The PDE
interface feature will be available in a future Torsten release.

Stan

Stan Math

libMesh
general-purpose

finite element solver

OpenSees
structural mechanics

solver

MFEM
light-weight

finite element solver

. . .

Conclusions and future work

Recent developments in Stan and Torsten significantly improve computational ef-
ficiency and extend the range of models that may be implemented. The addition
of within chain parallel computation to Stan/Torsten makes fully Bayesian analysis
with Stan an increasingly practical option for PMX applications.
Some near-future work planned for Torsten:

• Further improve MPI performance.

•Multi-level and hybrid parallel computing based on MPI and multithreading.

References
[1] MFEM: Modular finite element methods library. mfem.org.

[2] Torsten: library of C++ functions that support applications of Stan in Pharmacometrics. https://github.com/metrumresearchgroup/

Torsten.

[3] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter
Li, and Allen Riddell. Stan: A Probabilistic Programming Language. Journal of Statistical Software, 76(1):1–32, January 2017.

[4] Bob Carpenter, Matthew D. Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. The Stan Math Library: Reverse-Mode
Automatic Differentiation in C++. arXiv:1509.07164 [cs], September 2015. arXiv: 1509.07164.

[5] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E. Shumaker, and Carol S. Woodward. SUNDIALS:
Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software, 31(3):363–396, September 2005.

mailto:yiz@metrumrg.com
mailto:billg@metrumrg.com
https://www.metrumrg.com/
mailto:yiz@metrumrg.com
mailto:billg@metrumrg.com
mfem.org
https://github.com/metrumresearchgroup/Torsten
https://github.com/metrumresearchgroup/Torsten

