
Pharmacometric Machine Learning: Integrating Neural Networks for Flexible, Advanced Covari-ate Analysis
Ahmed Elmokadem, Ph.D, Matthew Wiens, M.A, Hillary Husband, Ph.D, Samuel P. Callisto, Ph.D, Kiersten Utsey, Ph.D, Timothy Knab, Ph.D, and Daniel Kirouac, Ph.D
Metrum Research Group, Boston, MA, USA

Abstract
Background: Integrating covariates in traditional pharmacometric modeling involves complex steps and assumptions about covariate-parameter relationships,
which may oversimplify or miss important clinical variables impacting pharmacology and response. Deep Compartment Modeling (DCM) addresses these
challenges by using artificial neural networks (ANN) to characterize these relationships in a single step, eliminating the need for covariate selection and
enabling complex data inputs and non-linearities. We demonstrate DCM in pharmacometric workflows using two open-source platforms: A Julia-based workflow
incorporating hierarchical random effects through Bayesian analysis [1], and an R workflow using Keras and TensorFlow for handling larger datasets [2].
Methods: Population Pharmacokinetic (PK) data with clinically relevant covariates was synthesized using a two compartment model to test the DCM frameworks.
For the Julia-based workflow, we assessed whether it could identify covariate relationships and quantify interindividual versus residual variability (random
effects) from a small dataset (10:20 train:test split). The R workflow was trained on a large (10,000 subject) dataset with non-linear covariates, exploring
various network architectures with minimal code using Keras.
Results: The Julia framework (a hierarchical DCM) successfully identified PK model parameters, random effects, and ANN weights while quantifying uncertainty.
This was evident from Bayesian model diagnostics and posterior predictive checks (PPCs) which accurately characterized the training and testing of PK datasets.
The R workflow effectively captured non-linear covariate relationships, highlighted by Shapley additive explanations (SHAP), while also estimating the Residual
Unexplained Variability (sigma) conditional on covariates.
Conclusion: Neural networks can be integrated with traditional pharmacometric models using several free open-source programming languages. Both Julia
and R environments are suitable platforms, but there are tradeoffs regarding development speed, built-in capabilities, and documentation. DCM simplifies the
covariate modeling process and uncovers complex, non-linear relationships in computationally efficient workflows.

Methods
The Julia Workflow

Figure 1. Hierarchical Deep Compartment Modeling (HDCM) workflow. The individual covariates x i are used as inputs to the ANN that would then output the typ-
ical individual parameters θi . IIV (ηi) and residual error (εi j) parameters are added to the hierarchical compartmental model structure. The model makes predictions that are
compared to the observed data within a Bayesian analysis framework to infer the posterior distributions of ANN parameters as well as the random effects.

Setup
Synthetic PK data for 30 subjects followed a two-compartment model. Data was split into training (n = 10) and test (n = 20) datasets.
Covariates used as ANN inputs: age, weight, EGFR, and albumin. ANN output θ represented PK parameters: CL, V1, Q, V2, and ka. IIV was added to C L such
that C Li = θi .e

ηi where ηi ∼ N(0,ω2).The model was built using DifferentialEquations.jl [3].
ANN structure
The ANN had 4 input nodes (covariates), 6 hidden nodes, and 5 output nodes (PK parameters). Activation functions: swish and CELU. The output layer was
initialized at the MAP Bayes estimate from an initial naive pooled fit. Flux.jl and DiffEqFlux.jl were used to build the ANN and integrate with ODE solvers.
Statistical model
Likelihood: ci j ∼ N(ĉi j ,σ

2)
where ci j = concentration of the drug for individual i at timepoint j and ĉi j = the corresponding prediction.

Prior distributions: ω∼ hal f − Cauchy(0, 0.5); σ ∼ hal f − Cauchy(0, 0.5); w∼ N(0,0.75)
where ω and σ represent the standard deviations of IIV and residual error, respectively. w represents the ANN weights.
NUTS drew 3 chains of posterior samples (500 warmup, 500 sampling) with a 0.65 acceptance ratio. Bayesian inference was performed using Turing.jl [4].

The R Workflow

Figure 2. Workflow Representation Diagram. Schematic of the Keras model, with each PK parameter, including RUV, estimated by the model for each individual. Random
effects are not included.

• DCMs were implemented in R using the Keras interface for TensorFlow [2]. PK parameters were estimated for each individual in this approach using the
observed covariates and drug concentrations as inputs to a neural network

• Alternative network structures were compared to a base neural network defined by one input layer, two hidden layers with nonlinear activation functions,
and one output layer of size five (corresponding to the estimated PK parameters: CL, V, V2, Q, and Sigma)

• Run times to fit identical DCMs were compared between GPU and 16-core CPU architectures on the flexible and autoscaling Metworx® platform

• A custom loss function representing the compartmental model was implemented using an ODE solver available in Keras, which can be extended to
additional ODE-based population PK structural models

Results
The hierarchical DCM framework was successfully applied in Julia to train an ANN to characterize the functional relationship between the tested covariates and
the typical PK parameters. The approach was evaluated using standard Bayesian inference diagnostics including trace and density plots that showed convergence
of all chains to the same distributions for the select parameters (Figure 3). The posterior estimates for the select parameters are shown in Table 1 with the
MCMC diagnostics: the Gelman-Rubin statistic (R̂) showing values < 1.05 and effective sample size (ESS) showing reasonably large values for ESSbulk and
ESStail . Table 2 displays the interpretable posterior predictions for the typical PK parameter values together with the uncertainty around the estimates. Posterior
predictive checks (PPCs) showed good characterization of the test data (no overfitting; Figure 4). DCMs optimized in Keras with complex covariate relationships
showed an ability to recover the simulated relationships with SHAP, an interpretable ML method (Figure 5). Estimation was substantially faster than the HDCM
framework in Julia, and for larger datasets performance was improved with the use of GPUs (Table 3).

Figure 3. Diagnostic plots. Trace and density plots of select param-
eters: σ = residual error, w = NN weight, ω = standard deviation
for IIV on C L, and η = individual random effect on C L. Number of
samples = 500, number of chains = 3.

Table 1. Parameter table. CI = credible interval, σ = residual error, w = NN
weight, ω = standard deviation for IIV on C L, and η = individual random effect
on C L. R̂ = Gelman-Rubin statistic, ESSbulk and ESStail are the effective sample
size at bulk and tail of the distribution, respectively.

Table 2. PK parameter table. SD = standard deviation, CI = credible interval,
CL = central clearance, V1 = central volume, Q = intercompartmental clearance,
V2 = peripheral volume, ka = absorption rate constant.

Figure 4. PPCs for test data. Summary PPCs for test data. Black dots =
observed data, blue line = median of prediction, blue bands = 95% CI for the pre-
dictions around distribution statistics, namely, median, 5%, and 95% of predictions.
Dashed lines are median, 5%, and 95% through observed data.

No effect Non−linear Sex Interaction

N
: 10

N
: 100

N
: 250

N
: 1000

N
: 5000

−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0−1.0−0.5 0.0 0.5 1.0

−1.5
−1.0
−0.5

0.0
0.5

−1.5
−1.0
−0.5

0.0
0.5

−1.5
−1.0
−0.5

0.0
0.5

−1.5
−1.0
−0.5

0.0
0.5

−1.5
−1.0
−0.5

0.0
0.5

Covariate Value

S
ha

pl
ey

 V
al

ue

Sex

−1

1

Source code: 
Source graphic: training−size−key−covs−shapley3.pdf

Figure 5. SHAP analysis of covariate effects. Visualization of the
estimated covariate relationship for three types of relationships: No
effect, a "hockey-stick" non-linear relationship, and a different linear
relationship by sex. The NN captures each of these relationships as
the sample size increases.

Table 3. Comparison of epoch run times between CPU and GPU architectures.

N CPU GPU Difference % Difference

N=100 2.12 sec 3.82 sec 1.7 sec 44.5%

N=500 11.57 sec 10.03 sec -1.54 sec -15.35%

N=750 16.75 sec 14.32 sec -2.43 sec -16.97%

N=1000 17.98 sec 19.43 sec 1.45 sec 7.46%

N=2000 36.39 sec 34.86 sec -1.53 sec -4.39%

N=5000 108.52 sec 88.22 sec -20.3 sec -23.01%

N=7500 152.95 sec 128.2 sec -24.75 sec -19.31%

Conclusion
• Demonstrated open-source R & Julia workflows integrating neural networks into pharmacometrics for covariate modeling

• Julia: Bayesian hierarchical modeling with uncertainty quantification

• R: SHAP analysis for nonlinear covariate relationships

References
[1] Bezanson, J., Edelman, A., Karpinski, S. and Shah, V.B. Julia: A Fresh Approach to

Numerical Computing. SIAM Rev. 59 (2017):65–98.

[2] Abadi, M, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
(2015). Software available from tensorflow.org.

[3] Rackauckas, C. and Nie, Q. DifferentialEquations.Jl – A performant and feature-rich
ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5 (2017):15.

[4] Ge, H., Xu, K. and Ghahramani, Z. Turing: A Language for Flexible Probabilistic Inference.
In A. Storkey and F. Perez-Cruz, (eds.) Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research,
volume 84 (PMLR, 2018), pages 1682–1690.

Metrum Research Group Publications/Posters

Presented at the American Society for Clinical Pharmacology and Therapeutics; 28 - 30 May, 2025 Copies available at: www.metrumrg.com/all-publications ©Metrum Research Group 2025


