A Novel Agent-based Computational Model for Liver-targeting, AAV-based Gene Therapies Could Predict AMA691 Response Durability in Hemophilia B Patients Treated with Etranacogene Dezaparvovec

Yuezhe Li¹, Partha Nandy², Eric Jordie¹, Karsten Peppel², Timothy Knab¹, Daniel Kirouac¹, A. Katharina Wilkins¹, Silpa Nuthalapati²

Introduction

- Adeno-associated virus (AAV) gene therapy offers a durable, single treatment for hemophilia B
- AAVs deliver DNA sequences into target cells, where the viral genome forms stable episomes, enabling the expression of therapeutic protein(s) by the host cell
- For self-renewing (i.e., not terminally differentiated) tissues or organs, the effects of cell turnover and episome propagation on durability of the therapeutic effect remain uncertain
- Differential equation-based models have been developed to predict AAV uptake and transgene protein production. However, capturing episome loss associated with target cell turnover is difficult in these models
- Here, an agent-based model (ABM) was developed to predict the long-term durability of coagulation factor IX (FIX) expression for gene therapy for hemophilia B, using simulation-based analyses on the impact of assumptions around cell biology, patient physiology and product characteristics

Methods

- An ABM was applied to etranacogene dezaparvovec (HEMGENIX[®]), a liver-targeting gene therapy for hemophilia B, with an AAV5 vector delivering a transgene encoding the Padua variant (R338L) of human coagulation FIX
- In the model, each agent represents an individual hepatocyte capable of cell division and death, and of being transduced with one or multiple AAV particles (**Figure 1**)
- Transduced target cells may pass episomes from mother to daughter cells during simulated cell division while all episomes were assumed lost upon host cell death
- The model was specified by nine kinetic parameters describing aspects of liver cell biology and AAV-mediated gene delivery (Table 1), and were informed by literature estimates
- The model was used to simulate FIX activity over 20 years following treatment
- Population variance was accounted for by creating a virtual patient population with age correlated with the age of patients that were enrolled in the HOPE-B trial (NCT03569891)
- Each virtual patient was parameterized via random uniform sampling on initial fraction of infected cells, number of episomes per transduced cell, patient age, and the maximum number of functional episomes expressed per cell (Table 2)
- 160,000 virtual patient simulations using a 1,000 agent-based representation of liver tissue resulted in reproducible statistics
- Model development, simulations and analyses were conducted in Julia 1.10.4.

Name	Description	Value	Source
β ₂	Proliferation probability of diploid hepatocytes per year	0.709	[¹]
δ ₂	Death probability of diploid hepatocytes per year	0.726	[¹]
β _p	Proliferation probability of polyploid hepatocytes per year	0.027	[¹], tuned
δ _p	Death probability of polyploid hepatocytes per year	0.019	[¹], tuned
K _{2p}	Probability for a diploid cell transition to be a polyploid cell per year	0.0054	[¹]
K _{p2}	Probability for a polyploid cell transition to be a diploid cell per year	0.0167	[¹]
k _{prodp}	FIX production rate per episome per transduced cell (unit: molecules/year)	Diploid: 3.15×10 ⁷ Polyploid: 6.3×10 ⁷	[<u>2-5</u>]
$k_{deg}^{protein}$	FIX degradation rate	886.16 1/year	[⁶]

Table 2: Parameter ranges used to set up virtual populations treated with etranacogene dezaparvovec

Paramete

Patient_a Max_episo

Initially_tra Init_Episo

Year 10 20

Presented at the American Society of Gene & Cell Therapy (ASGCT) 2025 Annual Meeting, New Orleans, LA, USA, May 13–17 2025.

 β_2 and β_n are the division probability of diploid and polyploid hepatocytes, respectively. δ_{2} and δ_{2} are the death probability of diploid and polyploid hepatocytes, respectively. $\tilde{K_{2n}}$ is the probability of diploid hepatocytes to change ploidy to polyploid hepatocytes. K_{n2} is the probability of polyploid hepatocytes to change ploidy to diploid hepatocytes. k_{prode} is protein-of-interest production rate per episome per transduced cell. $k_{dog}^{protein}$ is the degradation rate for the protein-of-interest. Parameter values can be found in **Table 1**.

Table 1: ABM parameters describing hepatocyte dynamics and factor IX (FIX) production after treatment with etranacogene dezaparvovec

er	Parameter description	Value	Unit
ge	Patient age	(2080)	Years
ome_express	Maximum number of episomes expressed per hepatocyte	(15)	Integer #
ansduced_cells	Initially transduced cells	(1070)	%
me	Number of episomes per transduced cell	10 ⁽¹³⁾	#/hepatocyte

Table 3: FIX activity simulated in virtual patient population compared to clinical observations

Simulated FIX activity (%)		Observed FIX activity (%)	
Median	95% Confidence Interval	Median	Range
35.5	7.82–99.1	41	5.9–113
31.8	7.01–91.7	35	9.1–99.2
28.2	6.12–83.5	45.3	13.7–80.3
21.8	4.42–68.6		
22.6	4.58–71		

Figure 2: ABM-simulated and observed FIX activity from the HOPE-B study over the first 4 years post-treatment

Light gray points represent individual clinical observations in the training data, blue triangles represent observations in the validation data. Light grey dash lines connect observations from the same subject. The green solid line represents the simulated mean FIX activity, and the shaded areas represent the 50%, 80% and 95% CIs (the darker shading corresponds to the tighter CI), and the shaded area represents the corresponding CI. The solid black line represents summarized clinical data of mean FIX activity observed in 47 patients enrolled in the HOPE-B trial over 4 years, the black bars represents the standard error. ABM, agent-based model; CI, confidence interval; FIX, factor IX.

Results

Figure 2)

References

1. Heinke P et al. Cell Syst. 2022;13(6):499–507; 2. Spronck EA. et al. Mol Ther Methods Clin Dev. 2019;13:334–343; 3. Birndorf NI, et al. Biochem. Physiol. 1971;38:157–161; 4. Orlova NA, et al. Acta Naturae 2012;4:62–73; 5. Chen X, et al. AAPS J. 2013;15:1141–1154; 6. Björkman S. Haemophilia. 2013;19(5):753–7; 7. Srivastava, A, et al. Haemophilia 2020;26(S6):1–158; 8. Collins PW, et al. Haemophilia 2011;17:2–10.

Acknowledgements

Editorial support was provided by Meridian HealthComms Ltd (part of the Bioscript Group Ltd), funded by CSL Behring. All authors reviewed the results and approved the final version of the poster.

¹Metrum Research Group, Boston, MA, USA. ²CSL Behring, King of Prussia, PA, USA.

 Model-predicted FIX activity for patients receiving etranacogene dezaparvovec was compared with clinical observations for 3 years following treatment (**Table 3**,

• The model-predicted sustained elevation of FIX activity over 20 years (**Figure 3**)

• The 5% percentile prediction of 20-year FIX activity exceeds the FIX activity threshold (2% FIX activity) reported to allow patients to 'lead normal lives', with a decrease in bleed number and long-term preservation of musculoskeletal function (7,8)

 Sustained elevation of predicted FIX activity was driven by FIX expression in polyploid hepatocytes (**Figure 4**)

• FIX expression from polyploid hepatocytes (half life ~5 years [1]) was predicted to be stable, and resulted in sustained elevation of FIX activity over 20 years

• FIX expression from diploid hepatocytes was predicted to decrease ~5 years after receiving etranacogene dezaparvovec due to episome loss related to cell turnover

Figure 3: ABM-predicted FIX activity, represented as percentage of normal, versus time over 20 years post-treatment

The solid blue line represents the predicted median FIX activity, and the shaded area represents the 95% CI. Red and blue dashed lines represent the 2% and 5% thresholds of normal FIX activity, respectively. ABM, agent-based model; CI, confidence interval; FIX, factor IX.

The solid blue line represents the predicted median FIX activity, and the shaded area represents the 95% CI. Red and blue dashed lines represent the 2% and 5% thresholds of normal FIX activity, respectively. ABM, agent-based model; CI, confidence interval; FIX, factor IX.

Conclusions

- AAV-based gene therapies
- characteristics may impact durability
- projects values lower than observed

Disclosures

Y Li, T Knab, DC Kirouac and AK Wilkins are employees of Metrum Research Group. E Jordie was an employee of Metrum Research Group at the time of the study, currently at Bill and Melinda Gates Foundation. P Nandy, K Peppel and S Nuthalapati are employees of CSL Behring.

Funding This study was funded by CSL Behring.

Time after gene transfer (years)

Diploid Polyploid

• There are many uncertainties around the long-term outcomes of

• ABMs can be used to predict how biological variables such as target cell turnover, liver physiology, viability and product

• It should be noted that the model is conservative and currently

• While the model applied here is in the context of AAV gene therapy for hemophilia B, the computational framework could be adaptable to other AAV-based gene therapies and diseases

