

Contents

"If you don't know where you are going, you'll end up someplace else." - Yogi Berra

Problem
Understand the problem and how we measure it

Frame
Frame
Frame
Frame
Frame the problem in a way we can measure progress

Analyze
Model, simulate, optimize
Model, simulate, optimize
Model, simulate, optimize
Analyze
Model, simulate, optimize
Results, learnings, assumptions and shortcomings

P

Problem

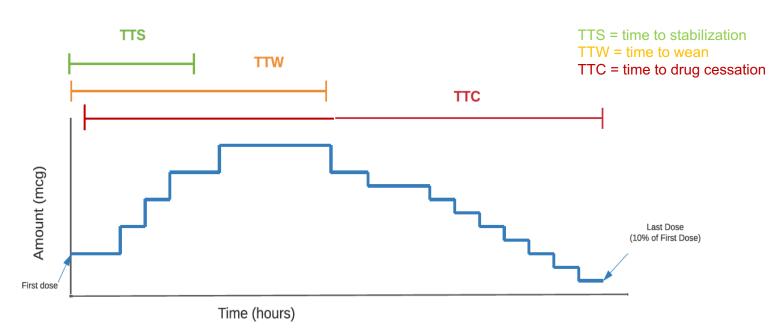
Understand the problem and how we measure it

Neonatal Opioid Withdrawal Syndrome (NOWS)

NOWS is a condition seen among infants born to mothers who have used opioids during the course of their pregnancy¹

- Weller AE, Crist RC, Reiner BC, Doyle GA, Berrettini WH. Neonatal Opioid Withdrawal Syndrome (NOWS): A Transgenerational Echo of the Opioid Crisis. Cold Spring Harb Perspect Med. 2021 Mar 1;11(3):a039669. doi: 10.1101/cshperspect.a039669. PMID: 32229609: PMCID: PMC7919394
- Kraft WK, Adeniyi-Jones SC, Chervoneva I, et al. Buprenorphine for the Treatment of the Neonatal Abstinence Syndrome. N Engl J Med 2017:376:2341-8.

- Incidence has increased substantially in the setting of the opioid epidemic ¹
- Symptoms include: autonomic instability, tremor, irritability, poor feeding, and loose stool.
- 1/3 of infants with NOWS respond to behavioral approaches to treatment (minimization of stimulations, rooming in, breast-feeding, high cal meals. The other ~ 2/3 require pharmacologic intervention ².
 - Standard of care includes administering an opioid for cosymptomatic control; then weaning off. Best opioid of choice is still under debate.



Project Objectives

Modeling Project Objective

Use existing PK and PD models to validate and update recommendations for buprenorphine starting dose, titration rate, and weaning rate.

Clinical Objective

Reduce hospital stays (weaning and time to cessation) for infants with NOWS

Frame

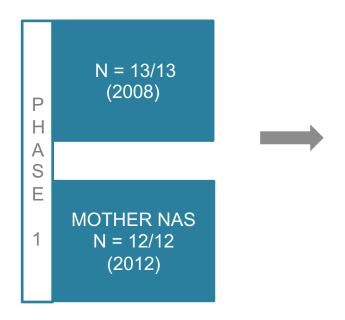
Frame the problem in a way we can measure progress

Simulation Question

What starting dose and titration rate is required to reach target exposure and full stabilization in 50% of patients, in less than 12 days?

Target exposure 0.8 ng/mL

AUCO-inf of 40 ng-hr/mL in moderately severe NAS


12 days to reach stabilization without treatment.

A

Analyze

Model, simulate, optimize

Clinical Trials

BBORN

<u>B</u>linded <u>B</u>uprenorphine <u>OR</u> <u>N</u>eonatal morphine solution (2017)

N = 33 / 30 per group

Start Dose: 15.9 ug/kg

SOC morphine

Response: MOTHER NAS
Outcome: Buprenorphine
reduced hospital stay by
median 12 days, relative to
morphine (median 23.8 days)

BPHORE

<u>Buprenorphine Pharmacometric</u> <u>Open Label Research study of</u> <u>Drug Exposure</u> (2021)

N = 10

Start Dose: 24 ug/kg

Response: MOTHER NAS **Outcome:** Median observed length of treatment was 16.8

days

2005 2010 2015 2020

Model Data Schematic

2 Update PK model, Develop PD model Adaptive dose simulations

Update PD model,
Adaptive dose
simulations evaluated

PK model

Pharmacokinetics of sublingual buprenorphine in neonates with NAS

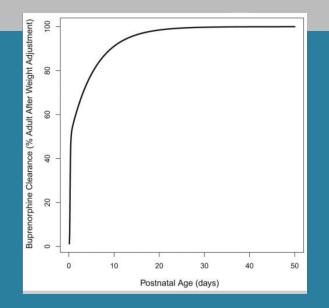
PK Model

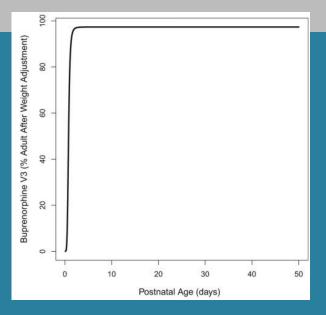
CL =
$$\theta_{\text{CL}} \times \left(\frac{\text{Emax} \times \text{PNA}^{\text{SLP}}}{\text{KM}^{\text{SLP}} + \text{PNA}^{\text{SLP}}}\right) + (1 - \text{Emax}_{\text{TF}})$$

$$\times \left(1 - e^{-\text{TF} \times \text{PNA}}\right) \times \left(\frac{\text{WT}}{70}\right)^{0.75}$$
(1)

V3 =
$$\theta_{V_3}$$
 × BASE + $\frac{(1 - BASE) * PNA^{SLP1}}{KM_{V_3}^{SLP1} + PNA^{SLP1}}$ × $(\frac{WT}{70})$ (2)

PNA - post natal age

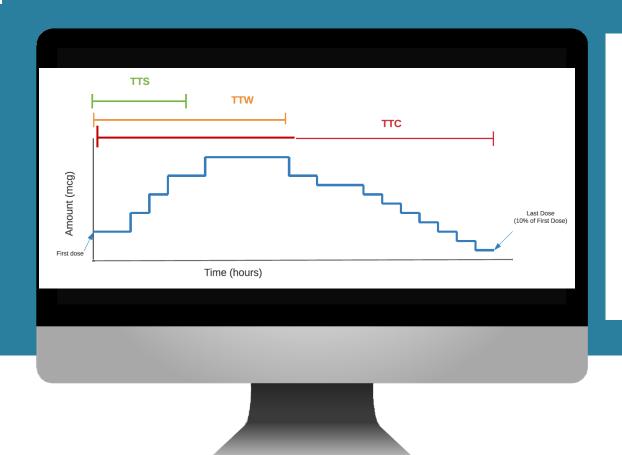

SLP - hill coefficient


Emax – max effect of PNA on CL for first pathway

KM - half max effect of PNA on CL

Emax_{TF} - Saturation point for second PNA -dependent pathway

TF- rate constant of saturation rate for second PNA-dependent CL pathway



Ng CM, Dombrowsky E, Lin H, Erlich ME, Moody DE, Barrett JS, Kraft WK. Population Pharmacokinetic Model of Sublingual Buprenorphine in Neonatal Abstinence Syndrome. Pharmacotherapy. 2015 Jul;35(7):670-80. doi: 10.1002/phar.1610. Epub 2015 Jul 14. PMID: 26172282; PMCID: PMC5119858.

BBORN

Confidential

Dosing Scheme:

Starting dose: 15.9 ug/kg/day

Max daily dose: 60 ug/kg/day

Up-titration rate: 25% q8hr

Max number of up-titrations: 6

Wean rate: 10% q8hr

Cessation: < 10% of starting dose

Starting Dose

Titration Rate

Max Dose

Wean Rate

MOTHER NAS

Based on Finnegin neonatal abstinence scoring system

Scored Elements				
Signs and Symptoms	Score			
Crying: Excessive high pitched	2			
Crying: Continuous high pitched	3			
Sleeps < 1 hours after feeding	3			
Sleeps < 2 hours after feeding	2			
Sleeps < 3 hours after feeding	1			
Hyperactive Moro Reflex	1			
Markedly Hyperactive Moro Reflex	2			
Mild Tremors: Disturbed	1			
Moderate-Severe Tremors: Disturbed	2			
Mild tremors: Undisturbed	1			
Moderate-Severe Tremors: Undisturbed	2			
Increased Muscle Tone	1-2			
Excoriation (Indicate specific area):	1-2			
Generalized Seizure (or convulsion)	8			
Fever > 37.3 C (99.2 F)	1			
Frequent Yawning (4 or more successive times)	1			
Sweating	1			
Nasal Stuffiness	1			
Sneezing (4 or more successive times)	1			
Tachypnea (Respiratory Rate >60/mm)	2			
Poor feeding	2			
Vomiting (or regurgitation)	2			
Loose Stools	2			
Failure to thrive (Current weight > 10% below birth	2			
weight 90% BWT=				
(record weight in score box 1 x day)				
Excessive Irritability	1-3			
Total Score				

Dosing Scheme

Sum of 3 Finnegan scores > 24 or a single score > 12

Randomization to treatment allocation

OR

Need for rescue dose

No

No

Yes

OR

Continue double blind

treatment.

Yes

Need for rescue dose?

Sum of 3 Finnegan scores

≥24 or a single score ≥ 12

BBORN

Yes

Up-titration 25% for buprenorphine/placebo and 20% for morphine/placebo

Maximum dose reached?

Stability for > 2 days without dose advancement?

Phenobarbital 20 mg/kg load with 5 mg/kg/day initiated.

Monitoring of Finnegan

scores on increased dose

Phenobarbital 2.5 mg/kg when opioid at 50% of maximum dose. Cessation of phenobarbital after three additional opioid wean.

Single rescue study drug at previous dose which symptoms controlled

Monitor at least 1 day prior to discharge

Yes

Wean up to once a day when the sum of the previous three scores is < 18.

Pharmacy notifies team when drug cessation occurs

Yes

- Buprenorphine when within 10% of initial dose
- Morphine 0.025 mg/kg q 4 hours

Titration Rate

Monitor for at least 2 days in an inpatient setting prior to discharge.

Any post cessation single score \geq 12?

Pharmacodynamics

Model

WITH is time course of withdrawal as a function of PNA and rate of xenobiotic removal (DRUGK)

NASMAX = max withdrawal symptoms

Confidential

WITHD = 1 - EXP(-DRUGK * PNA)

 $NAST = NASMAX * KM_{NAS}^{HILL2} / (PNA^{HILL2} + KM_{NAS}^{HILL2})$

 $E = E2MAX * C2^{HILL}/(EC50^{HILL} + C2^{HILL}) + 1$

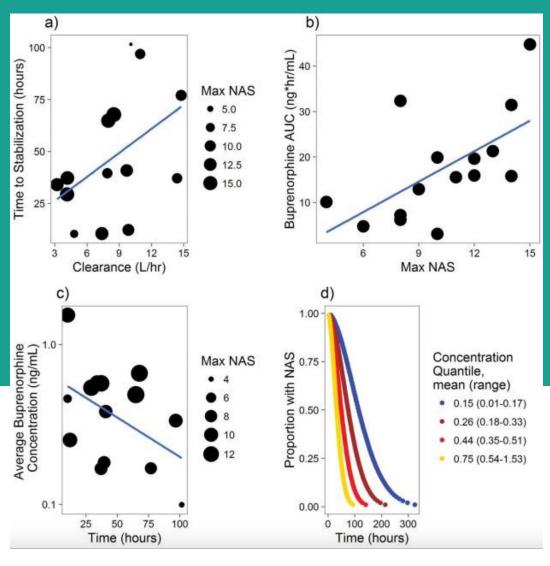
DNAS/DT = WITHD * NAST - KNAS * NAS * E,

KM_{NAS} age at which half max withdrawal symptoms is reached

E is drug (bup) effect

d (NAS) /dt is rate of NAS change

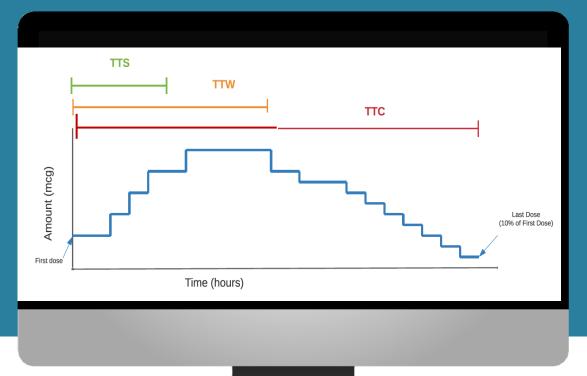
Moore JN, Gastonguay MR, Ng CM, Adeniyi-Jones SC, Moody DE, Fang WB, Ehrlich ME, Kraft WK. The Pharmacokinetics and Pharmacodynamics of Buprenorphine in Neonatal Abstinence Syndrome. Clin Pharmacol Ther. 2018 Jun;103(6):1029-1037. doi: 10.1002/cpt.1064. Epub 2018 Apr 28. PMID: 29516490; PMCID: PMC5992055.



Pharmacodynamics

Observed

BBORN


Moore JN, Gastonguay MR, Ng CM, Adeniyi-Jones SC, Moody DE, Fang WB, Ehrlich ME, Kraft WK. The Pharmacokinetics and Pharmacodynamics of Buprenorphine in Neonatal Abstinence Syndrome. Clin Pharmacol Ther. 2018 Jun;103(6):1029-1037. doi: 10.1002/cpt.1064. Epub 2018 Apr 28. PMID: 29516490; PMCID: PMC5992055.

- CL largest source of variability
- TTS increased with CL
- Predicted stabilization time (plot d, shown here) --> 0.8 ng/mL

BPHORE

Dosing Scheme:

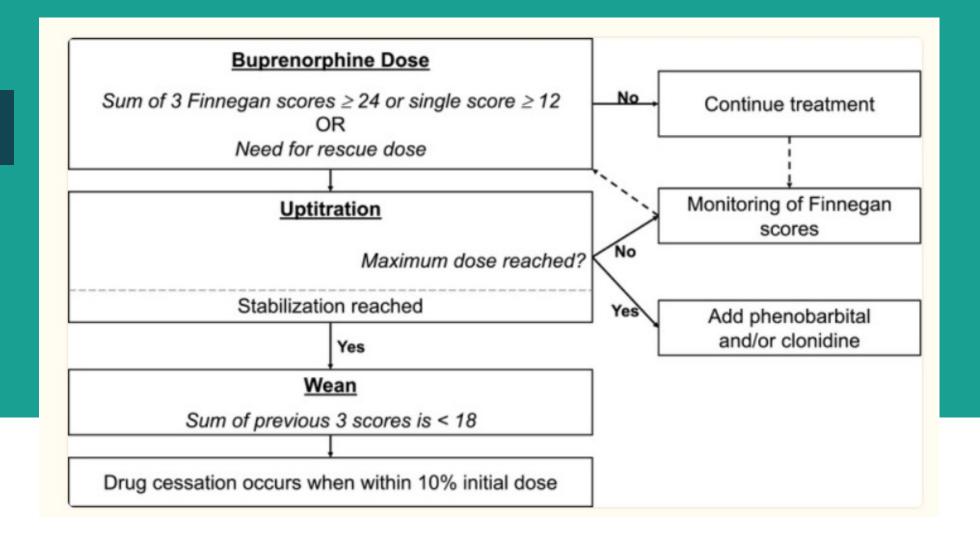
Table S1. Dose Regimen used for model generation (BBORN trial) and model testing (BPHORE)

Trial	BBORN	BPHORE
Initial dose (mcg/kg q 8 hr)	5.3	8
Uptitration rate	25%	33%
Maximum number of up-titrations	6	4
Maximum dose (mcg/kg q 8 hr)	20	25
Maximum daily dose (mcg/kg)	60	75
Weaning rate	10%	15%
Cessation dose	≤ 110% of initial dose	100% of initial dose
Dosing interval until bottom dose (hrs)	8	8
Dose interval extension #1 at bottom dose (hrs)	N/A	12
Dose interval extension #2 at bottom dose (hrs)	N/A	24

Starting Dose

Titration Rate

Max Dose


Wean Rate

Dosing Scheme

BPHORE

PD model: updated

$$NOWST = NOWSMAX * exp(-NOWSM * PNA)$$
 $EFFECT_{drug} = EMAX * C2 / (EC50 + C2) + 1$
 $\frac{dNOWS}{dt} = K_{in} * (1 + NOWST) - K_{out} * NOWS * EFFECT_{drug}$
 $NOWS_0 = K_{in} * (1 + NOWST) / K_{out}$

Parameter	Units	Estimate	95% CI	% CV	Shrinkage (%)
NOWSMAX	score	1.92	(1.76, 2.08)		
NOWSM	1/day	0.107	(0.102, 0.112)		
EMAX	unitless	1.85	(1.83, 1.87)		
EC50	ng/mL	0.942	(0.870, 1.01)		
Kin	score/hr	0.139	(0.128, 0.151)		
K _{out}	1/hr	0.0301	(0.0300, 0.0302)		
$\omega_{1,1}$: NOWSMAX	unitless	1.14	(-10.8, 13.1)	146	23.8
$\omega_{2,1}$: NOWSM -NOWSMAX	unitless	0.990	(-1.32, 3.30)	0.778 (corr)	
$\omega_{2,2}$: NOWSM	unitless	1.42	(-4.71, 7.55)	177	28.9
$\omega_{3,3}$: K _{out}	unitless	0.108	(0.0686, 0.148)	33.8	9.26
$\omega_{4.4}$: EMAX	unitless	0.726	(0.566, 0.887)	103	15.6
$SIGMA_{add}$	score	2.30	(2.29, 2.30)	70.000	

Adaptive Dose Simulations

What mrgsolve provides that NONMEM does not in this example.

And NONMEM is not

- ⋆ ONE model (not a million control streams)
- ★ Easier to make it adaptable
- ★ Rolling sum of 3 NAS scores

Code examples

Header file

```
h rollsum.h ×
(in the second s
                                                                                                                                                                                                                                   21
         1
                                                                                                                                                                                                                                   22 double roll::sum() {
                      #include <vector>
                                                                                                                                                                                                                                                            if(n_add < 3) {
                                                                                                                                                                                                                                   23 -
                      #include <iostream>
                                                                                                                                                                                                                                   24
                                                                                                                                                                                                                                                                       return -1.0;
                      #include <cmath>
                                                                                                                                                                                                                                   25 -
                                                                                                                                                                                                                                   26
                                                                                                                                                                                                                                                               double ans = 0;
           6 ▼ class roll {
                                                                                                                                                                                                                                  27 -
                                                                                                                                                                                                                                                             for(int i = 0; i < history.size(); ++i) {</pre>
                       public:
                                                                                                                                                                                                                                   28
                                                                                                                                                                                                                                                                      ans = ans + history.at(i);
                                std::vector<double> history;
                                                                                                                                                                                                                                   29 -
                               int n_add;
                                                                                                                                                                                                                                   30
                                                                                                                                                                                                                                                               return ans;
                               void reset();
                                                                                                                                                                                                                                  31 - ]
                               void add(double value);
     11
                                                                                                                                                                                                                                   32
     12
                                double sum();
                                                                                                                                                                                                                                   33 - void roll::add(double value) {
     13 - };
                                                                                                                                                                                                                                                              history[0] = history[1];
                                                                                                                                                                                                                                   34
     14
                                                                                                                                                                                                                                                             history[1] = history[2];
                                                                                                                                                                                                                                  35
     15 - void roll::reset() {
                                                                                                                                                                                                                                                              history[2] = value;
                              history.clear();
                                                                                                                                                                                                                                  36
     16
                               history.assign(3,0.0);
                                                                                                                                                                                                                                  37
                                                                                                                                                                                                                                                              ++n_add;
      17
     18
                               n_add = 0;
                                                                                                                                                                                                                                   38
     19 - }
                                                                                                                                                                                                                                  39 - }
      20
```


Code examples

Model file

```
rollsum.cpp ×
$INCLUDE rollsum.h
    $GLOBAL
    rollsum hx;
    $MAIN
  7 if(NEWIND <=1) {
      hx.reset(100);
  8
  9 - }
 10
 11
    $CMT FOO
 12
    $TABLE
    hx.add(TIME);
     capture rolling_sum = hx.sum();
 16
 17
```


Code examples

Model file

RS = rolling sum (of last 3 NAS)

```
120 // Titrate
121 - if(RS>=24 || LFIN >=12){
       if(DTYPE ==0 && EVID ==1){
122 -
123
         NUMTIT = LNUMTIT + 1;
         LNUMTIT = NUMTIT;
124
125
         TITR = 1;
126
         NUMWEAN = LNUMWEAN;
127
         LNUMWEAN = NUMWEAN;
128 -
129 ^ }
130
     // Wean
131 - if(LFIN <=8, NUMTIT>=1 && RS<18 && DTYPE==0 && EVID ==1){
        NUMWEAN = LNUMWEAN + 1;
132
133
       LNUMWEAN = NUMWEAN;
       WEAN = 1;
134
135
       TITR = 1;
       NUMTIT = LNUMTIT;
136
137
       LNUMTIT = NUMTIT;
138 - }
170
171
     if(EVID==105) hx.add(LFIN);
      capture RS = hx.sum();
172
173
```


R

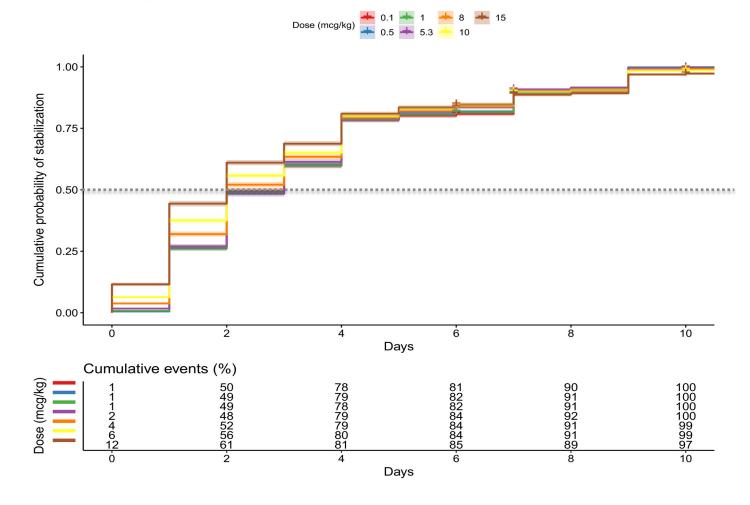
Report

Results, learnings, assumptions and shortcomings

Survival curves

Probability of Stabilization

Probability of Stabilization for Different Dose Levels at a 25% Titration Rate


Kaplan-Meier Plot

Simulated time to event time to stabilization (TTS) at different initial dose levels and at a 25% up-titration rate.

+ denotes censoring

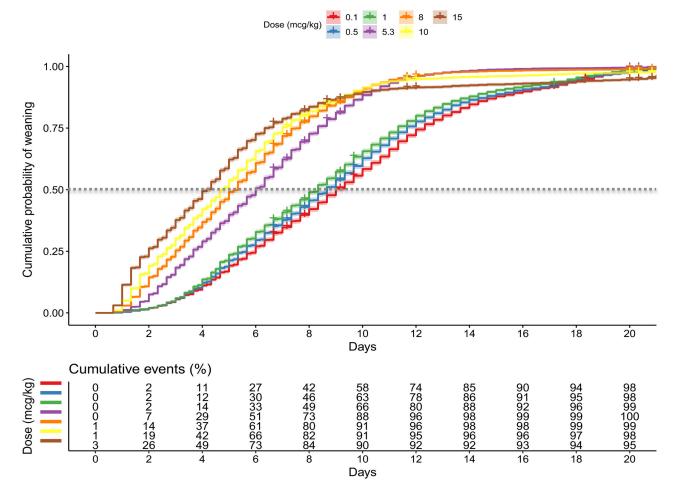
Summary Table

Summary of the estimated percentage of patients who have reached stabilization, stratified by starting dose

Survival curves

Probability of Weaning


Kaplan-Meier Plot


Simulated time to event time to stabilization (TTS) at different initial dose levels and at a 25% up-titration rate.

+ denotes censoring

Summary Table

Summary of the estimated percentage of patients who have reached weaning, by starting dose

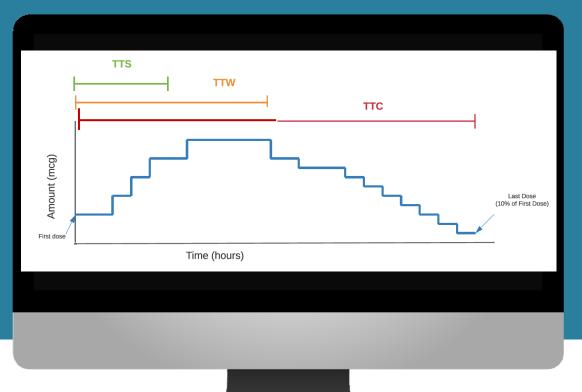
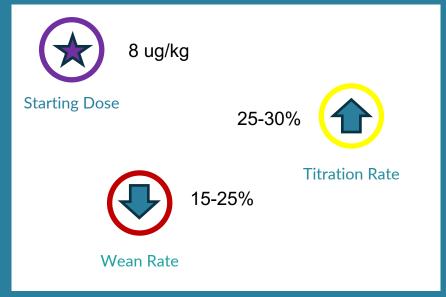

Simulation Table

TABLE 2 Simulated stabilization, weaning and cessation times (days) for probability level of at least 50% by initial dose and uptitration and wean rates


	Titration rate (%)		Wean rate (%)						
Dose	25	30	50	10	15	25			
Time to s	Time to stabilization (days)								
0.1	2.7	1.7	2						
0.5	2.7	1.7	2						
1	2.7	1.7	2						
5.3	2.7	1.7	2.3						
8	2.3	1.7	2						
10	2	1.5	2						
15	1.7	1.3	1.7						
Time to weaning (days)									
0.1	9	9	9						
0.5	8.7	8.7	8.7						
1	8.3	8.3	8.3						
5.3	6	6	6.3						
8	5.3	5	5.3						
10	4.8	4.7	5						
15	4.2	4.2	4.3						
Time to c	essation	(days)							
0.1				22.7	19	15.3			
0.5				21.7	18.3	15			
1				21	17.3	14			
5.3				15	12.7	10			
8				12.7	10.7	8.7			
10				12	10	8			
15				10	8.3	6.7			

Note: The observed time to stabilization, time to wean, and time to cessation in the Blinded Buprenorphine OR Neonatal morphine (BBORN) trial (dose = $5.3 \mu g/kg$, 25% titration level, and 10% wean level) at the same probability was 4.92, 9.37 and 19.8 days, respectively.

Optimized parameters

Dosing Scheme:

Max Dose

- Estimated EC50 was 0.942 ng/ml (0.870-1.01 95% CI)
- Average concentration was ~ 0.26 ng/mL for both studies
- This indicates we are having efficacy at the low end of the exposure-response curve and could potentially dose much higher

Discussion

Some of the shortcomings of the simulations

Protocol deviations

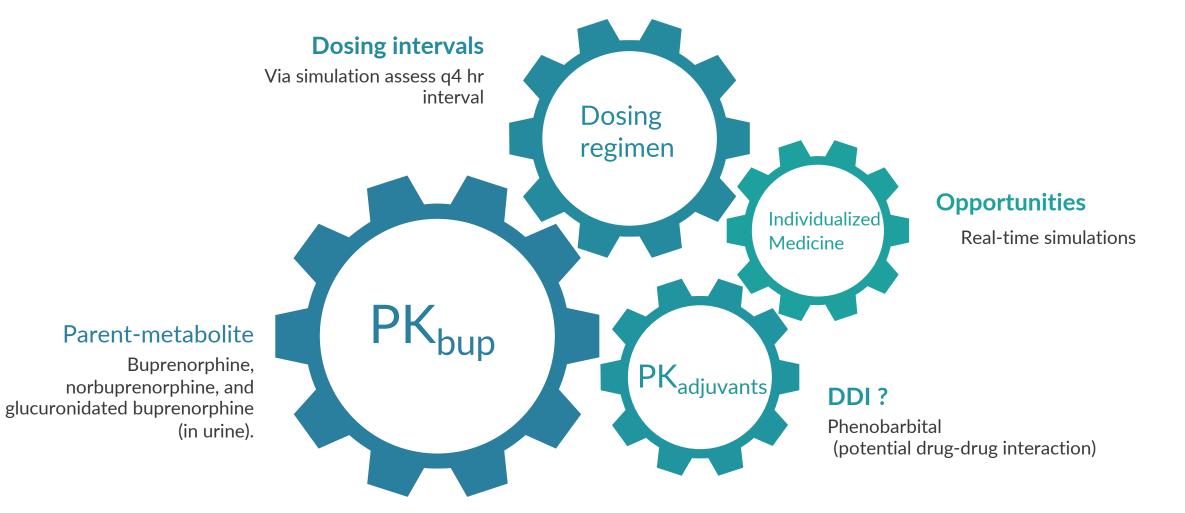
Were at the discretion of the attending physician and cannot be mimicked completely by the simulations

Maximum dose

Rule was not imposed in the simulations, because adjuvant therapies could not be simulated accurately

Adjuvant therapies

50% of subjects in BPHORE reached max dose and needed phenobarbital and/or clonidine


Titration events

Protocol stated only 1 event within 24 hours; this was not imposed in simulations.

Future Work

Still lots to do.

Contents

"If you don't know where you are going, you'll end up someplace else." – Yogi Berra

Problem
Understand the problem and how we measure it

Frame the problem in a way we can measure progress

Analyze
Model, simulate, optimize
Model, simulate, optimize
Results, learnings, assumptions and shortcomings

Thank you!

My email:

renae@metrumrg.com

Back ups

NOWS statistics:

"In 2019, 1 in 5 women who used prescription opioid pain relievers during their pregnancy reported misuse of these medications, defined as receiving opioids from a non-healthcare source or using for a reason other than to relieve pain

Ko JY, D'Angelo DV, Haight SC, Morrow B, Cox S, Salvesen von Essen B, et al. Vital signs: prescription opioid pain reliever use during pregnancy-34 U.S. Jurisdictions, 2019. MMWR Morb Mortal Wkly Rep. 2020;69:897–903.

From 2010 to 2017, the estimated NAS rate significantly increased by 3.3 per 1000 birth hospitalizations (95% CI, 2.5-4.1), from 4.0 (95% CI, 3.3-4.7) to 7.3 (95% CI, 6.8-7.7).

Hirai AH, Ko JY, Owens PL, Stocks C, Patrick SW. Neonatal Abstinence Syndrome and Maternal Opioid-Related Diagnoses in the US, 2010-2017. JAMA. 2021 Jan 12;325(2):146-155. doi: 10.1001/jama.2020.24991. Erratum in: JAMA. 2021 Jun 8;325(22):2316. PMID: 33433576; PMCID: PMC7804920.

According to 2020 data from the <u>Healthcare Cost and Utilization Project</u> (HCUP), which is managed by the U.S. Agency for Healthcare Research and Quality, about six newborns were diagnosed with neonatal abstinence syndrome (NAS) for every 1,000 newborn hospital stays. https://www.cdc.gov/pregnancy/opioids/data.html

