
1Page

An Introduction to the
R Programming Language
13th Annual Indiana CTSI Disease and Therapeutic Response Modeling

and Simulation Symposium

Samuel Callisto - Senior Scientist, Metrum Research Group
Mike Heathman - Senior Principal Scientist, Metrum Research Group

February 29th, 2024

2Page

Schedule

12:00 - 12:30 | Lecture: Base R Syntax
12:30 - 12:45 | Hands-On #1
12:45 - 13:25 | Lecture: Tidyverse
13:25 - 13:45 | Hands-On #2
13:45 - 13:55 | BREAK
13:55 - 14:25 | Lecture: Plotting with ggplot
14:25 - 14:45 | Hands-On #3
14:45 - 15:15 | Lecture: Loops and Function Writing
15:15 - 15:35 | Hands-On #4
15:35 - 16:00 | Wrap-up + Q&A

3Page

Target Audience
This workshop is intended for

● Users with little or no programming experience
● Those looking for a refresher in basic R programming

This workshop will NOT cover advanced topics such as:

● managing your R packages
● running statistical tests
● conducting simulations using R

4Page

A special thanks to Pete Bonate and Devin Pastoor for sharing their materials from
previous R workshops, which have been adapted for use in parts of this slide deck

5Page

Lecture 1: Base R Syntax

6Page

Why is R so hard to learn?
● First and foremost, R is a programming language

○ This is both its greatest strength and largest impediment for new learners

● R is fundamentally different from other statistics tools such as SAS, Stata, SPSS,
Excel, etc.

● Many scientists have not taken formal programming courses

● Understanding some basic programming principles will help you become a
better R user

7Page

Introduction
● The R programming language was created by Ross Ihaka and Robert Gentleman

at the University of Auckland in 1993

● R is based on the S programming language, a commercial product initially
developed by Bell Labs

● R is free and open source
○ Open source = source code is available for modification and redistribution

8Page

How do we interact with R?
● Many users interact with R using the RStudio IDE (integrated development

environment)

● Two main flavors of “programs” that you can write in R
● R scripts

○ Basic script
● Markdown scripts (Rmd or qmd)

○ Imposes structure on script
○ Produces customizable output documents in various formats (e.g. html, pdf)

● For either type, R will run the commands in the order that they are input,
ignoring any line that begins with the comment (#) symbol

9Page

Basic Concepts

● Working Directory
• The default location where R will look for files to load and where it will put any files you save
• > setwd(“C:\home\directory”) – set working directory
• > getwd() – get working directory
• RStudio: files -> more -> set as working directory

● Projects in Rstudio
• An RStudio Project keeps all of your R scripts, markdown documents, and data together in

one place
• Each project has its own directory, workspace, history, and source documents

• Different analyses are kept separate from each other
• RStudio: File -> New Project

10Page

● Use the “assign operator” <- to store the value from right hand side in a
named variable on the left hand side

● Unlike some programming languages, in R you do not need to specify the data
type for a new variable

● Variables can be overwritten, even as a different data type

test <- “hello world”
test
class(test)
test <- 11
test
class(test)

Creating and using variables

11Page

Functions

● An object which contains a series of instructions to perform a specific task
• A function name is always followed by parentheses
log(x)
c(1, 1, 2, 3, 5)

● “Arguments” are ”passed” into a function to determine the output
• Some arguments are required, others are optional
• Some arguments will have a default value

● Base R comes with many functions defined
● Install packages to load additional functions for specific tasks
● help(log) or ?mean will open documentation in RStudio
● Users can easily define their own functions (covered in Lecture 4 today)

12Page

Data Types

● Numeric data are numbers that contain a decimal. Actually they can also be
whole numbers but we’ll gloss over that.

● Integers are whole numbers (those numbers without a decimal point).
● Logical data take on the value of either TRUE or FALSE. There’s also another

special type of logical called NA to represent missing values.
● Character data are used to represent string values. You can think of character

strings as something like a word (or multiple words).
● Factor data are a special type of character string, with additional attributes

(like levels and an order).

13Page

Data Types

● class() function will tell you what type an object is
x <- 12
class(x)
[1] “numeric”

● Logical test to check object class
is.numeric(x)
[1] TRUE
is.character(x)
[1] FALSE

14Page

● Sometimes we may want to convert from one data type to another, this is
called “typecasting”

● If R is unable to interpret the data in the requested format, it will return NA
● NA is how R represents missing values
● NAs are “contagious”, meaning that most operations on an NA will return an NA

as.character(1)

> “1”
as.numeric(“12.0”)
> 12.0
as.numeric(“A”)
> NA

Typecasting

15Page

Data Structures – Scalars and Vectors

● Scalar – an object containing a single value
x <- 12

● Vector – an object containing a set of elements, all of the same class
y <- 0:12
> y
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12

names <- c(“Bob”,”Ralph”,”Mickey”)
>names[2]
[1] “Ralph”

16Page

Creating numeric vectors
1:5
[1] 1 2 3 4 5
seq(from=1, to=5, by=1)
[1] 1 2 3 4 5
rep(1,5)
[1] 1 1 1 1 1
c(4, 2, 3, 1, 5)
[1] 4 2 3 1 5
sort(c(4,2,3,1,5))
[1] 1 2 3 4 5

NOTE: outputs from one function
can be used as input to another
function using nesting

17Page

Creating Factors
● Recall that Factors are an enumerated character data type
● We can think of these as labels corresponding to a numeric value

> factor(x=c(1,0,1,1,0), levels = 0:1, labels = c("Female", "Male"))
[1] Male Female Male Male Female
Levels: Female Male

18Page

Data Structures – Matrices and Arrays

● Matrix – an object containing a square matrix of values, all of the same class
> mymat <- matrix(1:16, nrow = 4, byrow = TRUE)
> my_mat

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
[4,] 13 14 15 16

● Array – a multi-dimensional array

19Page

Data Structures - Lists

● Lists are objects which contain other objects of various data types.
> mylist <- list(colours = c("black", "yellow", "orange"),

evaluation = c(TRUE, TRUE, FALSE, TRUE, FALSE, FALSE),
time = matrix(1:6, nrow = 2))

> mylist

$colours

[1] "black" "yellow" "orange"

$evaluation

[1] TRUE TRUE FALSE TRUE FALSE FALSE

$time

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

MAJOR BENEFIT:
items in the list do not
need to be the same length

20Page

Data Structures – Data Frames

● A data frame is a two-dimensional object made up of rows and columns
● Each column within the data frame can be of a different type
● All items must be the same length

> mydata <- data.frame(COLOR=c("Black","Yellow","Orange"),
EVALUATION=c(TRUE,TRUE,FALSE),
VALUE=c(1,3,6))

> mydata
COLOR EVALUATION VALUE

1 Black TRUE 1
2 Yellow TRUE 3
3 Orange FALSE 6

21Page

Data Structures – Data Frames

● Dimension of data frame
> dim(mydata)

[1] 3 3

● Accessing individual columns
> mydata$COLOR

[1] Black Yellow Orange

Levels: Black Orange Yellow

> mydata[[“VALUE”]]

[1] 1 3 6

● Accessing individual rows
> mydata[2,]

COLOR EVALUATION VALUE

2 Yellow TRUE 3

22Page

Some useful mathematical operations
functions will

operate on either
scalar or every item

in a vector with
identical syntax

+ - * / arithmetic operations

x^2 x squared

sqrt(x) square root of x

y %% x remainder of y/x (modulo operator)

round(x, digits=3) rounds x to the nearest thousandth

floor(x) round down to nearest integer

ceiling(x) round up to nearest integer

sum(x) sum of all values in the vector x

quantile(x, 0.9) 90th percentile of the vector x

mean(x) mean of the vector x

23Page

Read and Write Data

● The readr package makes it easy to read or write multiple file formats using
functions that start with read_* or write_*

● The imported tables are of class tibble (tbl_df), a modern version
of data.frame from the tibble package

> library(readr)
> nmdata <- read_csv("pk-nonmem-example.csv”)
> dim(nmdata)
[1] 1488 27

Functions Description

read_csv() or read_csv2() write_csv() comma or semicolon (CSV)

read_delim() write_delim() general separator

read_table() write_table() whitespace-separated

argument is a relative
path from your

working directory

base R functions also
exist (read.csv), and

other data structures
are available

24Page

Mike’s Unoffical Style Guide

● Avoid using more than 80 characters per line to allow reading the complete
code

● Always use a space after a comma, never before
● The operators (==, +, -, <-,%>%, etc.) should have a space before and after
● There is no space between the name of a function and the first parenthesis,

nor between the last argument and the final parenthesis of a function
● Avoid reusing names of functions and common variables (c <- 5 vs. c())
● Sort the script separating the parts with the comment form

Import data -----
● Avoid accent marks or special symbols in names, files, routes, etc
● Object names should follow a constant structure (day_one vs. day_1)

25Page

Quick RStudio demo

● Create a new R script
● Save to folder
● Run in console vs run in script

26Page

Hands-On #1: Building a data.frame
● Create a data.frame matching the

table shown
● hint: type ?rep() into the console to

see help for the replicate function

● Save the output to an object
named “dat”

● Verify that the structure and
contents of dat are correct

● Save “dat” to disk in your working
directory with the name
“output.csv”

ID TIME DV SEX WT ROW

1 1 2 M 70 1

1 6 4 M 70 2

1 24 6 M 72 3

2 1 2 F 64 4

2 6 4 F 64 5

2 24 6 F 63 6

3 1 2 M 98 7

3 6 4 M 98 8

3 24 6 M 98 9

27Page

Lecture 2: Tidyverse

28Page

Tidyverse

● The Tidyverse is a collection of packages specially focused on data science
● The core of the tidyverse collection is made up of the following packages:

● To install: install.packages(“tidyverse”)
● To load: library(tidyverse)

tibble Modern and effective table system

dplyr Grammar for data manipulation

tidyr Set of functions to create tidy data

stringr Function set to work with characters

readr An easy and fast way to import data

forcats Tools to easily work with factors

29Page

What’s a tibble?
● A tibble is a special type of data.frame used by tidyverse
● Includes and displays metadata about each column
● data.frames are automatically converted to tibbles as outputs of tidyverse

functions
● For all intents and purposes, tibbles and data.frames can be treated the same
● Can manually convert back and forth using typecasting functions

as_tibble() or as.data.frame()

30Page

Pipe %>%

● The pipe operator, %>%, allows the user to combine functions without the
need to assign the result to a new object

● The pipe operator passes the output of a function to the first argument of the
next function

● This way of combining functions allows you to chain together sequential tasks

● Trivial example:

1:5 %>% mean()
[1] 3

There is also a new pipe
operator |> in base R that

mostly works the same

31Page

major data manipulation verbs

32Page

Verb Usage

filter keep matching row criteria

summarize calculates summaries, returns reduced output

mutate add new variables to existing data.frame

select select columns by name

arrange reorder rows

33Page

ID GENDER WT

1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

df <- data.frame(
ID = 1:5,
GENDER = c("MALE", "MALE", "FEMALE",

"MALE", "FEMALE"),
WT = c(70, 76, 60, 64, 68))

34Page

Verb Usage

filter keep matching row criteria

summarize calculates summaries, returns reduced output

mutate add new variables to existing data.frame

select select columns by name

arrange reorder rows

35Page

ID GENDER WT

1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

filter(df, GENDER == "FEMALE")

ID GENDER WT
3 FEMALE 60

5 FEMALE 68

36Pagecommon dplyr filter (subset)
operators

operator meaning

==, != equal, not equal

>, >= greater than, greater than or equal to

<, <= less than, less than or equal to

is.na(), !is.na() is NA, not NA

!duplicated() only first value

%in% in specified values

filter
separator

base
equivalent meaning

, & and
| | or

37Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

filter(df, ID %in% c(1, 3, 5))

ID GENDER WT
1 MALE 70

3 FEMALE 60

5 FEMALE 68

38Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

filter(df, GENDER == "MALE", WT > 70)

ID GENDER WT
2 MALE 76

39Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

filter(df, GENDER == "FEMALE" | WT < 70)

ID GENDER WT
3 FEMALE 60

4 MALE 64

5 FEMALE 68

40Page

Verb Usage

filter keep matching row criteria

summarize calculates summaries, returns reduced output

mutate add new variables to existing data.frame

select select columns by name

arrange reorder rows

41Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

df %>%
summarize(meanWT = mean(WT))

meanWT
67.6

summarize(df, meanWT = mean(WT))

42Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

df %>% group_by(GENDER) %>%

summarize(meanWT =

mean(WT)) %>% ungroup()

GENDER meanWT
MALE 70

FEMALE 64

You should always ungroup
after grouping, but I will omit
it from here on out to save

space

43Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

df %>% group_by(GENDER) %>%

summarize(meanWT = mean(WT),

n = n())

GENDER meanWT n
MALE 70 3

FEMALE 64 2

44Page

Verb Usage

filter keep matching row criteria

summarize calculates summaries, returns reduced output

mutate add new variables to existing data.frame

select select columns by name

arrange reorder rows

45Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

df %>% mutate(
meanWT = mean(WT))

ID GENDER WT meanWT
1 MALE 70 67.6

2 MALE 76 67.6

3 FEMALE 60 67.6

4 MALE 64 67.6

5 FEMALE 68 67.6

46Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

df %>%
group_by(GENDER) %>%
mutate(meanWT = mean(WT))

ID GENDER WT meanWT
1 MALE 70 70

2 MALE 76 70

3 FEMALE 60 64

4 MALE 64 70

5 FEMALE 68 64

47Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

df %>% group_by(GENDER) %>%

mutate(meanWT = mean(WT),

mWT_LB = meanWT*2.2)

ID GENDER WT meanWT mWT_LB
1 MALE 70 70 154

2 MALE 76 70 154

3 FEMALE 60 64 140.8

4 MALE 64 70 154

5 FEMALE 68 64 140.8

48Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

df %>%

mutate(ISM = if_else(GENDER == "MALE", 1, 0))

49Page

A brief aside on conditional statements

● R has several ways to conditionally apply a function or return a value based on
some conditional statement

● The most commonly used function in data analysis is if_else()
• switch statements are implemented using case_when() function (see backups)

function call

conditional statement

returned if TRUE

returned if FALSE

if_else(GENDER == "MALE", 1, 0)

50Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

df %>%

mutate(ISM = if_else(GENDER == "MALE", 1, 0))

ID GENDER WT ISM
1 MALE 70 1

2 MALE 76 1

3 FEMALE 60 0

4 MALE 64 1

5 FEMALE 68 0

51Page

Verb Usage

filter keep matching row criteria

summarize calculates summaries, returns reduced output

mutate add new variables to existing data.frame

select select columns by name

arrange reorder rows

52Page

ID GENDER WT meanWT
1 MALE 70 67.6

2 MALE 76 67.6

3 FEMALE 60 67.6

4 MALE 64 67.6

5 FEMALE 68 67.6

df2 %>% select(ID, WT)

ID WT
1 70

2 76

3 60

4 64

5 68

53Page

ID GENDER WT meanWT
1 MALE 70 67.6

2 MALE 76 67.6

3 FEMALE 60 67.6

4 MALE 64 67.6

5 FEMALE 68 67.6

df2 %>% select(GENDER:meanWT)

GENDER WT meanWT
MALE 70 67.6

MALE 76 67.6

FEMALE 60 67.6

MALE 64 67.6

FEMALE 68 67.6

54Page

ID GENDER WT meanWT
1 MALE 70 67.6

2 MALE 76 67.6

3 FEMALE 60 67.6

4 MALE 64 67.6

5 FEMALE 68 67.6

df2 %>% select(-ID)

GENDER WT meanWT
MALE 70 67.6

MALE 76 67.6

FEMALE 60 67.6

MALE 64 67.6

FEMALE 68 67.6

55Page

ID GENDER WT meanWT
1 MALE 70 67.6

2 MALE 76 67.6

3 FEMALE 60 67.6

4 MALE 64 67.6

5 FEMALE 68 67.6

df2 %>% select(ID, WEIGHT = WT)

ID WEIGHT
1 70

2 76

3 60

4 64

5 68

56Page

ID GENDER WT meanWT
1 MALE 70 67.6

2 MALE 76 67.6

3 FEMALE 60 67.6

4 MALE 64 67.6

5 FEMALE 68 67.6

df2 %>% rename(WEIGHT = WT)

ID GENDER WEIGHT meanWT
1 MALE 70 67.6

2 MALE 76 67.6

3 FEMALE 60 67.6

4 MALE 64 67.6

5 FEMALE 68 67.6

57Page

function meaning example columns selected

starts_with names start with starts_with("WEIGHT")) WEIGHT, WEIGHT_KG

ends_with names ends with ends_with("GHT") WEIGHT, MEAN_WEIGHT, HEIGHT

contains names contains contains("EI") WEIGHT, WEIGHT_KG,
MEAN_WEIGHT, HEIGHT

matches regular
expression
matching

matches("_") WEIGHT_KG, MEAN_WEIGHT

num_range

specify range of
columns with
consistent names
with numeric
suffix

num_range("OCC",1:3) OCC1, OCC2, OCC3

df %>% select(<function>(<arguments>))
df with the following columns:

WEIGHT WEIGHT_KG MEAN_WEIGHT OCC1 OCC2 OCC3 OCC4 HEIGHT

58Page

Verb Usage

filter keep matching row criteria

summarize calculates summaries, returns reduced output

mutate add new variables to existing data.frame

select select columns by name

arrange reorder rows

59Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

ID GENDER WT
3 FEMALE 60

4 MALE 64

5 FEMALE 68

1 MALE 70

2 MALE 76

df %>% arrange(WT)

lowest weight

highest weight

60Page

ID GENDER WT
1 MALE 70

2 MALE 76

3 FEMALE 60

4 MALE 64

5 FEMALE 68

ID GENDER WT
2 MALE 76

1 MALE 70

5 FEMALE 68

4 MALE 64

3 FEMALE 60

df %>% arrange(desc(WT))

lowest weight

highest weight

61Page

minor data manipulation verbs

62Page

Verb Usage

distinct keep all distinct elements per key

slice
return certain rows by number (overall or
within group)

rename rename columns

relocate move a column within the data frame

63Page

Theoph %>%
distinct(Subject)

Subject
3
6
7
8
11

Subject Wt Dose Time conc
1 79.6 4.02 0 0.74
1 79.6 4.02 0.25 2.84
1 79.6 4.02 0.57 6.57
1 79.6 4.02 1.12 10.5
1 79.6 4.02 2.02 9.66
1 79.6 4.02 3.82 8.58

head(Theoph)

64Page

Theoph %>%
distinct(Subject,

.keep_all = TRUE)
Subject Wt Dose Time conc

1 79.6 4.02 0 0.74
1 79.6 4.02 0.25 2.84
1 79.6 4.02 0.57 6.57
1 79.6 4.02 1.12 10.5
1 79.6 4.02 2.02 9.66
1 79.6 4.02 3.82 8.58

head(Theoph)

Subject Wt Dose Time conc
1 79.6 4.02 0 0.74
2 72.4 4.4 0 0
3 70.5 4.53 0 0
4 72.7 4.4 0 0
5 54.6 5.86 0 0

65PageTheoph %>%
group_by(Subject) %>%
slice(1:2)

Subject Wt Dose Time conc
6 80.0 4.00 0.00 0.00
6 80.0 4.00 0.27 1.29
7 64.6 4.95 0.00 0.15
7 64.6 4.95 0.25 0.85
8 70.5 4.53 0.00 0.00
8 70.5 4.53 0.25 3.05
11 65.0 4.92 0.00 0.00
11 65.0 4.92 0.25 4.86
3 70.5 4.53 0.00 0.00
3 70.5 4.53 0.27 4.40

Subject Wt Dose Time conc
6 80.0 4.00 0.00 0.00
6 80.0 4.00 23.85 0.92
7 64.6 4.95 0.00 0.15
7 64.6 4.95 24.22 1.15
8 70.5 4.53 0.00 0.00
8 70.5 4.53 24.12 1.25
11 65.0 4.92 0.00 0.00
11 65.0 4.92 24.08 0.86
3 70.5 4.53 0.00 0.00
3 70.5 4.53 24.17 1.05

Theoph %>%
group_by(Subject) %>%
slice(c(1, n()))

66Page

ID Wt Dose Time conc
3 70.5 4.53 0.00 0.00
3 70.5 4.53 0.27 4.40

Theoph %>%
rename(ID = Subject)

67Page

Theoph %>%
relocate(Wt, .after=conc)

Subject Wt Dose Time conc
1 79.6 4.02 0 0.74
1 79.6 4.02 0.25 2.84
1 79.6 4.02 0.57 6.57
1 79.6 4.02 1.12 10.5
1 79.6 4.02 2.02 9.66
1 79.6 4.02 3.82 8.58

head(Theoph)

Subject Dose Time conc Wt
1 4.02 0 0.74 79.6
1 4.02 0.25 2.84 79.6
1 4.02 0.57 6.57 79.6
1 4.02 1.12 10.5 79.6
1 4.02 2.02 9.66 79.6
1 4.02 3.82 8.58 79.6

68Page

dplyr joins

69Page

<join>(x_df, y_df)

70Page

ID TIME
1 0

1 1

2 0

2 1

3 0

3 1

idtime <- data.frame(expand.grid(
ID = as.numeric(1:3),
TIME = c(0,1))

) %>% arrange(ID)
idwt <- data.frame(

ID = c(1, 2, 4), WT = c(70, 80, 75))

ID WT
1 70

2 80

4 75

idwt

idtime

71Page

joins

● The _join() functions add columns from one data frame to another, matching
rows based on the values in common columns.

● The by=c(names) argument is used to explicitly specify the match columns

Function Description

inner_join(x,y) Includes all rows that occur in both x and y

left_join(x,y) Includes all rows that occur in x

right_join(x,y) Includes all rows that occur in y

full_join(x,y) Includes all rows that occur in either x or y

72PageINNER JOIN

ID TIME WT

1 0 70

1 1 70

2 0 80

2 1 80

ID WT TIME

1 70 0

1 70 1

2 80 0

2 80 1

inner_join(idtime, idwt)

inner_join(idwt, idtime)

ID TIME
1 0

1 1

2 0

2 1

3 0

3 1

ID WT
1 70

2 80

4 75

idtime

idwt

idtime/idwt => in both

73Page

ID TIME WT
1 0 70

1 1 70

2 0 80

2 1 80

3 0 NA

3 1 NA

ID WT TIME
1 70 0

1 70 1

2 80 0

2 80 1

4 75 NA

left_join(idtime, idwt)

left_join(idwt, idtime)

ID TIME
1 0

1 1

2 0

2 1

3 0

3 1

ID WT
1 70

2 80

4 75

idtime

idwt

LEFT JOIN idtime/idwt => in both

74Page

ID TIME WT
1 0 70

1 1 70

2 0 80

2 1 80

3 0 NA

3 1 NA

4 NA 75

ID WT TIME
1 70 0

1 70 1

2 80 0

2 80 1

3 NA 0

3 NA 1

4 75 NA

full_join(idtime, idwt)

full_join(idwt, idtime)

ID TIME
1 0

1 1

2 0

2 1

3 0

3 1

ID WT
1 70

2 80

4 75

idwt

idtime

FULL JOIN idtime/idwt => in both

75Page

pivot_<direction>(df)

76Page

pivots

● The pivot_longer() function “pivots” the data to make it longer, with more rows
and fewer columns

• The values from multiple columns are placed in one column, with another column containing
the previous variable names

• Often useful for ”stacking” data prior to plotting, when you want to colorize plots by column
● The pivot_wider() function “pivots” the data to make it wider, with fewer rows

and more columns
• Pulls values from one column and the associated names from another to create additional

columns
● replaces “gather” and “spread” syntax as of tidyr 1.0.0

77Page

ID name value
1 SEX M

1 AGE 45

1 WT 77.2

4 SEX M

4 AGE 36

4 WT 72.3

7 SEX F

7 AGE 64

7 WT 119

PIVOT WIDER

ID SEX AGE WT
1 M 45 77.2

4 M 36 72.3

7 F 64 119

df %>%
pivot_wider(id_cols=ID,
names_from = name,
values_from = value)

Useful for converting from SDTM/ADaM-style data
set to a NONMEM-style data set

78PagePIVOT LONGER

ID SEX AGE WT
1 M 45 77.2

4 M 36 72.3

7 F 64 119

df %>%
pivot_longer(cols=SEX:WT,

names_to = "name",
values_to = "value")

ID name value
1 SEX M

1 AGE 45

1 WT 77.2

4 SEX M

4 AGE 36

4 WT 72.3

7 SEX F

7 AGE 64

7 WT 119

79Page

Character Manipulation

● For working with strings we can use the stringr package, whose functions
always start with str_* followed by a verb and the first argument

Function Description

str_replace() replace patterns

str_c() combine characters

str_detect() detect patterns

str_extract() extract patterns

str_sub() extract by position

str_length() length of string

80Page

Hands-On #2: Modifying an existing data set
● Import mad-nonmem.csv
● Filter out commented rows (i.e. in column C, rows equal to “C”)
● Create new columns in the data set

○ TIMED = time in days, rounded to the nearest hundredth
○ SEX_c = recode SEX column from 0/1 to M/F
○ DOSE_f = factor of doses in ascending order

● Drop all columns between TAD and ADDL (inclusive), and DTTM
● Move TIMED next to the TIME column

Challenge: Create a new data frame using a pivot_* function to create a three-
column data set, where the first column is the ID, the second column is the name
of a covariate, and the third column is the value of a covariate

81Page

Lecture 2 Backups

82Page

* expand.grid is a very handy
function for generating
permutations

* MDV = missing dependent
variable (a NONMEM-style
flag column)

dosing_df <- data.frame(ID = 1:2, TIME =0,

AMT = 100, MDV = 1)
sample_df <- data.frame(expand.grid(ID = 1:2, TIME = seq(0, 2, 1),

AMT = 0, MDV = 0)
df3 <- bind_rows(sample_df,

dosing_df)

df3

ID TIME AMT MDV

1 0 0 0
2 0 0 0
1 1 0 0

2 1 0 0
1 2 0 0
2 2 0 0

1 0 100 1
2 0 100 1

83Page

ID TIME AMT MDV
1 0 0 0
2 0 0 0

1 1 0 0
2 1 0 0
1 2 0 0

2 2 0 0
1 0 100 1
2 0 100 1

ID TIME AMT MDV
1 0 100 1
1 0 0 0

1 1 0 0
1 2 0 0
2 0 100 1

2 0 0 0
2 1 0 0
2 2 0 0

df3 %>% arrange(ID, TIME, desc(MDV))

84PageJoin Usage

inner_join return all rows from x where there are matching
values in y, and all columns from x and y.

left_join return all rows from x, and all columns from x and y.

semi_join return all rows from x where there are matching

values in y, keeping just columns from x.

anti_join return all rows from x where there are not matching

values in y, keeping just columns from x.

full_join returns all rows and columns from x and y, with NA

values for non-matching values from either.

85Page

ID TIME
1 0

1 1

2 0

2 1

3 0

3 1

ID WT
1 70

2 80

4 75

idwt

idtime

ID TIME
1 0

1 1

2 0

2 1

ID WT
1 70

2 80

semi_join(idtime, idwt)

semi_join(idwt, idtime)

SEMI JOIN idtime/idwt => in both

* A semi join differs from an inner join because an inner join will return one row of x
for each matching row of y, where a semi join will never duplicate rows of x

86Page

ID TIME
1 0

1 1

2 0

2 1

3 0

3 1

ID WT
1 70

2 80

4 75

idwt

idtime

anti_join(idtime, idwt)

anti_join(idwt, idtime)

ID TIME
3 0

3 1

ID WT
4 75

ANTI JOIN idtime/idwt => in both

87Pageif_else() vs case_when()
race %>%
mutate(
racec =

case_when(
racen == 0 ~ "Caucasian",

racen == 1 ~ "Black",

racen == 2 ~ "Asian",

racen == 3 ~ "Hispanic",

racen == 4 ~ "Other",
TRUE ~ "missing"

)

)

id racen racec

1 0 Caucasian

2 1 Black

3 2 Asian

4 3 Hispanic

5 NA missing

88Page

id racen raceifelse racecasewhe
n

1 0 Caucasian Caucasian
2 1 Black Black
3 2 Asian Asian
4 3 Hispanic Hispanic
5 NA NA missing

89Page

Lecture 3: ggplot

90Page

ggplot: a modern system for data visualization

● The grammar of graphics (gg) consists of the sum of several independent
layers of objects that are combined using + to construct the final graph

Layers are stacked sequentially to
create the final plot

ggplot(aes()) +
geom_line() +
geom_point() +
geom_line(col=“red”)

91Page

Elements of ggplot

92Page
https://rstudio.github.io/cheatsheets/

93Pageggplot(data=Theoph, aes(x = Time, y = conc))

Underlying data Data columns and their associated
aesthetic ‘mappings’

Subject Wt Dose Time conc
1 79.6 4.02 0 0.74
1 79.6 4.02 0.25 2.84
1 79.6 4.02 0.57 6.57
1 79.6 4.02 1.12 10.5
1 79.6 4.02 2.02 9.66
1 79.6 4.02 3.82 8.58

94Pageggplot(data=Theoph, aes(x = Time, y =
conc))

95Pageggplot(data=Theoph, aes(x = Time, y = conc)) +
geom_point()

96Pageggplot(data=Theoph, aes(x = Time, y = conc,
color=Subject)) + geom_point()

97Pageggplot(data=Theoph,aes(x=Time, y=conc,
color=Subject))+ geom_point()+ geom_smooth(se=FALSE)

98PagePropagating aesthetic properties
ggplot(data=Theoph,aes(x=Time,y=conc, color = Subject))+
geom_point()+
geom_smooth(se=FALSE, aes(color = NULL))

data and aes() are
inherited from ggplot
call, but can also be
assigned individually

for each geom

99Pageggplot(data=Theoph, aes(x = Time, y = conc)) +
geom_point() + geom_line()

100Pageggplot(data=Theoph, aes(x = Time, y = conc,
group = Subject)) +
geom_point() + geom_line()

101PageObjects can be saved and more layers added

conc_time +
scale_y_log10() +
ylab("Concentration")

conc_time

conc_time <- ggplot(data = Theoph,

aes(x = Time, y = conc, group = Subject)
) + geom_line()

ggplot(data = Theoph, aes(x = Time,
y = conc, group = Subject)) +
geom_point(color = 'red') +
geom_line(size = 1.5)

ggplot(data = Theoph, aes(x = Time,
y = conc, group = Subject)) +
geom_line(size = 1.5) +
geom_point(color = 'red')

Order matters visually!

Notice here that color and
size don’t use aes()
because they aren’t using
columns in the Theoph dataset

103Page
Facets

ggplot(sd_oral_richpk, aes(x = Time, y = Conc)) +
geom_line(aes(group = ID)) +
facet_wrap(~Gender)

Facets are
ordered

alphabetically
unless they

are factors –
use factors to

enforce
ordering of

facets

facet_grid()
also exists which
facets by more

than one variable

104Page

boxplots in ggplot

105Page
dat %>%
group_by(ID) %>% slice(1) %>% ungroup() %>%
ggplot(aes(x=DOSE, y=WT)) +
geom_boxplot()

This is not what we want.

Creating boxplots requires the
group element to be defined to
work properly

106Page
dat %>%
group_by(ID) %>% slice(1) %>% ungroup() %>%
ggplot(aes(x=DOSE, y=WT, group=DOSE)) +
geom_boxplot()

This is getting closer,
but why are we seeing
the weird spacing on

the x-axis?

107Pagedat %>%
group_by(ID) %>% slice(1) %>% ungroup() %>%
ggplot(aes(x=as.character(DOSE),

y=WT, group=as.character(DOSE))) +
geom_boxplot()

group is no longer
required when x is a

character/factor

Our spacing is fixed,
but the order is not
correct because it’s

alphabetical

108Pagedat %>%
group_by(ID) %>% slice(1) %>% ungroup() %>%
mutate(DOSE_f = factor(DOSE, levels = c(0.5,2.5,10,25))) %>%
ggplot(aes(x=DOSE_f, y=WT)) +

geom_boxplot() +
labs(x="Dose (mg)",

y="Weight (kg)") +
theme_bw()

Creating factors
enforces order for
faceting as well!

109Pagedat %>%
<slice and mutate> %>%
ggplot(aes(x=DOSE_f, y=WT, fill=SEX_c)) +

geom_boxplot() +
labs(x="Dose (mg)", y="Weight (kg)", fill="Sex") +
theme_bw() + theme(legend.position = ”bottom")

110Page

customizing aesthetics

111PageScales relate to axis and legends

Title

Breaks
(ticks)

Labels

Title

values

112Page

ggplot(Theoph, aes(time, conc)) +
geom_point(aes(color = Subject)) +
scale_color_discrete(name = ‘ID’) +
scale_y_continuous(name = ‘Concentration (mg/L)’,
breaks = c(0, 0.5, 1, 2, 5, 10))

Naming convention for a scale has three elements separated by ”_”
1. scale
2. The name of the aesthetic (e.g., color, shape or etc)
3. The name of the scale (e.g., continuous, discrete, manual).

scale_<aes>_<type>(name, breaks, labels)

113Page

Summary of ggplot

● Objects are layered in sequential order to create the plot
• first line = bottom layer, last line = top layer

● Aesthetics and data are inherited from ggplot() object, but can be overwritten
within individual geometries (geom_*)

● Grouping is important to ensure plots turn out how you want them to look
● adding aesthetics enforces grouping as well, boxplot can be a bit tricky, just play with it

● There are a lot of helpful tutorials how to make specific plots on the internet,
don’t hesitate to Google this stuff!

114Page

Hands-On #3: Plotting our data
Using the dataset from the previous hands-on, create the following plots:

● Plot 1: boxplot showing the distribution of age for each sex in your data set
● hint: consider the number of rows per subject

● Plot 2: spaghetti plot (e.g. a line for each subject and a dot for each
observation) of all subjects with each dose group uniquely colored, faceted by
study day (DAY column), with the y-axis presented on a log scale

○ hint: use Factors to get doses to show up in order

Challenge: use summarize() and create a boxplot of individual Cmax values for each
dose level

115Page

Lecture 3 Backups

116Page
ggplot(sd_oral_richpk, aes(x = Time, y = Conc)) +
geom_line(aes(group = ID)) +
facet_grid(Race~Gender,
labeller = labeller(Gender = label_both, Race = label_value))

117Page

Lecture 4: Loops and Functions

118Page

Don’t copy-paste your code
● Whenever you get the urge to copy a chunk of code and use it somewhere

else in the same script, you should write a function
○ Prevents accidental typos introduced in copy-pasting
○ Anything you would change becomes an argument

● “When will I use this?”
○ Helper functions
○ Repetitive workflows
○ Simulations/bootstraps
○ Plotting

119Page

Anatomy of a function in R
function to calculate factorial of x
my_factorial <- function(x){
calculate product for all numbers from 1 to x
product <- prod(seq(1,x,1))
return product
return(product)

}

function test
my_factorial(3)
> 6

Function name
Function arguments
Internally-scoped variables
Return statement

120Page

A two-argument example
function to implement the "choose" operator
my_choose <- function(x,y){
calculate x choose y using our factorial function
my_factorial(x) / (my_factorial(y) * my_factorial(x-y))

}

test function
my_choose(3,2)
> 3

If return() is not explicitly
called, the outputs of the last line

will be returned automatically

BUT it is better to be explicit!

121Page

Using defaults and ellipsis
ci95 <- function(x, lo_q=0.025, hi_q = 0.975, ...){
lo <- quantile(x, probs=lo_q, ...)
hi <- quantile(x, probs=hi_q, ...)
return(c(lo, hi))

}
ci95(1:200)
> 2.5% 97.5%
> 5.975 195.025

ci95(1:200, names=FALSE)
> 5.975 195.025

122Page

Using function outputs
assign function output to named variable
out_90 <- ci95(1:200, lo_q=0.05, hi_q = 0.95)

out_90
> 5% 95%
> 10.95 190.05

display output in meaningful context
paste("90% CI:", out_90[1], "-", out_90[2])
> "90% CI: 10.95 - 190.05"

123Page

Summary of functions
● If your function shares a name with a function already in the environment, the

existing function will be overwritten with your new function
○ Bad practice to use existing function names

● Arguments without default values are required for the function to run
● Arguments with defaults will use the default value unless the function call

provides new values
● Ellipsis are used to pass additional arguments to calculations inside a function
● Any object created inside a function cannot be accessed outside of the

function (scoping)
● Comments and meaningful variable names are the best way to ensure your

function can be reused by other people (and future you!)

124Page

The “for” loop
● In programming, a “loop” means a process which is repeated a certain number

of times (“for” loop) or until a specific condition is met (“while” loop)
○ We won’t discuss while loops today since they are not used as frequently in data analysis

loop counter variable

function call loop sequence

for(i in 1:n){<operation>}

125Page

A simple for loop

print("ignition sequence")

for (i in 10:1){
print(i)

}

print("blastoff")

126Page

Executing code in a for loop
vec <- c("one", "two", "three")

for (i in 1:length(vec)) {
if (vec[i] == "one") {

vec[i] <- "1"
}

}
message("Replaced vector:")
print(vec)

here is an example of a
conditional statement which
differs from the if_else()

format shown earlier

127Page

Vector calculations in R
● For loops are common in most programming languages
● R is built for vector calculations, making many for loops unnecessary
● The code on the previous page could be re-written without a loop as such:

vec <- c("one", "two", "three")
vec [vec == "one"] <- "1"

print(vec)

128Page

apply() functions
● Furthermore, the for loop is slow in R due to its emphasis on vectorized

coding
● Base R has a series of functions called the apply() functions which are

recommended to be used in place of for loops
○ apply(), lapply(), sapply(), tapply(), vapply()

● These functions run much faster than for loops

129Page

map: how tidyverse implements for loops
● The purrr package implements many looping mechanism, most importantly the

map function

map(1:n,function(i)<operation>)
function call

loop sequence

loop counter variable

130Page

Using functions in map
vec <- c("one", "two", "three")
replace_one <- function(i) if_else(i == "one" , "1", i)
purrr::map(vec, replace_one)
[[1]]
[1] "1"

[[2]]
[1] "two"

[[3]]
[1] "three"

map defaults to returning output as a
list, but there are several helper

functions which will typecast outputs
for you automatically

131Page

Typecasting output and anonymous functions
> out <- purrr::map_chr(vec, function(i) {
+ if_else(i == "one" , "1", i)
+ })
> class(out)
[1] "character"
> out
[1] "1" "two" "three"

132Page

Simulating a small clinical trial population
sim_trial_arm <- function(x, n_subjects=4) {

data.frame(
ARM = x,
ID = seq(n_subjects),
DOSE = <some function>,
MALE = <some function>,
WT = <some function>

) %>% return()
}

133Page

Simulating a single arm
> sim_trial_arm(1)
ARM ID DOSE MALE WT
1 1 10 mg 1 100.3
1 2 10 mg 1 94.7
1 3 25 mg 0 83.3
1 4 Placebo 0 67.4

134Page

Simulating multiple arms using map()
> map_df(seq(3), sim_trial_arm)

ARM ID DOSE MALE WT
1 1 1 25 mg 1 84.6
2 1 2 Placebo 1 74.0
3 1 3 10 mg 1 76.0
4 1 4 25 mg 0 67.8
5 2 1 10 mg 1 89.5
6 2 2 10 mg 1 78.2
7 2 3 Placebo 1 77.3
8 2 4 25 mg 1 69.2

9 3 1 25 mg 1 65.4
10 3 2 25 mg 0 82.2
11 3 3 Placebo 0 78.3
12 3 4 25 mg 0 80.1

> map_df(seq(3), sim_trial_arm)

ARM ID DOSE MALE WT
1 1 1 25 mg 0 69.2
2 1 2 25 mg 0 88.0
3 1 3 Placebo 0 83.6
4 1 4 Placebo 1 80.9
5 2 1 25 mg 1 96.3
6 2 2 10 mg 0 72.8
7 2 3 Placebo 0 106.2
8 2 4 10 mg 1 98.4

9 3 1 Placebo 1 75.8
10 3 2 10 mg 1 68.6
11 3 3 25 mg 0 79.5
12 3 4 25 mg 1 70.6

But, our results aren’t reproducible!

135Page

An aside on random numbers in R

● A random number generator is used for any function in R that requires some
amount of stochasticity (e.g. sampling from a distribution)

● The set.seed() function is one way to setting initial value in random
number generator so that reproducible results can be obtained

● Examples of commonly used random functions in R
● Sample from uniform distribution: runif(n=5, min=0, max=1)

● Sample from normal distribution: rnorm(n=5, mean=0, sd=1)

● Sample from an object in R: sample(c(“red”, “green”), x=5, replace=TRUE)

136Page

Simulating a small clinical trial population
sim_trial_arm <- function(x, n_subjects=4) {

data.frame(
ARM = x,
ID = seq(n_subjects),
DOSE = sample(c("10 mg", "25 mg", "Placebo"),

size=n_subjects, replace=TRUE),
MALE = runif(n_subjects) %>% round(),
WT = rnorm(n_subjects, mean=80, sd=12) %>% round(digits=1)

)
}

137Page

Setting RNG seed allows results to be reproduced
> set.seed(123)
> map_df(seq(3), sim_trial_arm)

ARM ID DOSE MALE WT
1 1 1 Placebo 1 81.6
2 1 2 Placebo 0 100.6
3 1 3 Placebo 1 85.5
4 1 4 25 mg 1 64.8
5 2 1 10 mg 1 86.6
6 2 2 Placebo 1 82.9
7 2 3 Placebo 1 67.4
8 2 4 10 mg 1 95.5
9 3 1 25 mg 0 77.4
10 3 2 10 mg 0 67.7
11 3 3 Placebo 0 71.3
12 3 4 Placebo 0 72.5

> set.seed(123)
> map_df(seq(3), sim_trial_arm)

ARM ID DOSE MALE WT
1 1 1 Placebo 1 81.6
2 1 2 Placebo 0 100.6
3 1 3 Placebo 1 85.5
4 1 4 25 mg 1 64.8
5 2 1 10 mg 1 86.6
6 2 2 Placebo 1 82.9
7 2 3 Placebo 1 67.4
8 2 4 10 mg 1 95.5
9 3 1 25 mg 0 77.4
10 3 2 10 mg 0 67.7
11 3 3 Placebo 0 71.3
12 3 4 Placebo 0 72.5

138Page

Adjusting arguments using the tilde operator
> purrr::map_df(seq(3), ~ sim_trial_arm(.x, n_subjects = 6))

ARM ID DOSE MALE WT
1 1 1 10 mg 1 90.7
2 1 2 Placebo 0 90.5
3 1 3 10 mg 1 89.9
4 1 4 Placebo 0 88.3
5 1 5 25 mg 0 86.6
6 1 6 10 mg 0 79.3
7 2 1 Placebo 1 75.2
8 2 2 25 mg 1 74.4
9 2 3 25 mg 1 89.4
10 2 4 Placebo 0 79.0
11 2 5 25 mg 0 83.0
12 2 6 25 mg 1 79.7
13 3 1 25 mg 1 84.6
14 3 2 10 mg 0 74.0
15 3 3 Placebo 1 76.0
16 3 4 Placebo 1 67.8
17 3 5 25 mg 1 67.1
18 3 6 Placebo 0 83.6

The tilde operator
~ is equivalent to
function(.x)

139Page

Hands-On #4: Writing a custom summary function
● Import mad_nonmem.csv
● Write a function that summarizes continuous covariates and outputs them in

the following format: “mean [5th percentile, 95th percentile]”
● Apply the function separately for each dose group across the following

covariates
○ WT, AGE, EGFR, BILI

● Pivot the data set so you have three columns: Dose, Covariate Name, and
Covariate Summary Value

Challenge: Use map() to create a list of individual concentration-time plots

140Page

Open-source Pharmacometrics R Packages
www.metrumrg.com/merge-expo

● What you’ll find in this Expo:
• Our approach to project set-up, data assembly, M&S activities, and reporting.
• Access to example code in a Github repository.
• Information and vignettes on MetrumRG’s suite of tools.

http://www.metrumrg.com/merge-expo

141Page

Additional Resources
https://intro2r.com/ - Introduction to Base R and RStudio

https://dominicroye.github.io/en/2020/a-very-short-introduction-to-tidyverse/
A short introduction to the Tidyverse

https://www.rstudio.com/resources/cheatsheets/
Quick reference guides for tidyverse functions

https://r4ds.had.co.nz/
Free textbook “R for Data Science” by Hadley Wickham covering many topics

https://intro2r.com/
https://dominicroye.github.io/en/2020/a-very-short-introduction-to-tidyverse/
https://www.rstudio.com/resources/cheatsheets/
https://r4ds.had.co.nz/

