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Introduction to Exposure-Response Analysis

What do we mean by exposure?

» Any measure of how much drug a person is exposed to:
> Dose (e.g., daily dose, total dose)
> Drug concentration in the body at some time point (e.g., maximum
concentration following the first dose, average concentration during
the dosing interval at steady state)
> Time above some threshold (e.g., time above minimum effective

concentration)
> Integrated measure of concentration (e.g., area under the
concentration-time curve at steady state)

(Ruiz-Garcia et al. 2023)
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Introduction to Exposure-Response Analysis

Observed concentration-time data

X
X
C 3
.% X
= X
c
Q
2
S
(@) X X
2
0O 4]
| X
0 12 24 36 48

Time (h)

©2023 4 December 2023 7/152



Physiologically based pharmacokinetic model (PBPK)

This data can be modeled very mechanistically ...
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Introduction to Exposure-Response Analysis

Compartmental pharmacokinetic (PK) model

... or not so mechanistically
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Introduction to Exposure-Response Analysis

Simulation from fitted PK model
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Single dose exposure metrics
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Introduction to Exposure-Response Analysis

Multiple dose PK simulation
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Introduction to Exposure-Response Analysis

Multiple dose exposure metrics
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Introduction to Exposure-Response Analysis

Multiple dose PK simulation with between-subject
variability
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Introduction to Exposure-Response Analysis

Dose vs exposure
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Exposure-response for binary endpoint
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Introduction to Exposure-Response Analysis

Exposure-response: Logistic regression model

We fit a basic logistic regression model:

n = Bo + /L1AUC
P(Y = 1|AUC e’
(Y =1AUC) = T

The model is fit in brms with default (flat) priors (not something we'd
typically do in practice)
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Introduction to Exposure-Response Analysis

Fitted logistic regression model
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Family: bernoulli
Links: mu = logit
Formula: event ~ AUC
Data: sim_auc (Number of observations: 60)
Draws: 4 chains, each with iter = 2000; warmup = 500; thin
total post-warmup draws = 6000

Population-Level Effects:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS
Intercept 0.78 0.35 0.15 1.50 1.00 2395
AUC 1.47 0.50 0.58 2.56 1.00 2643
Draws were sampled using sampling(NUTS). For each parameter,

and Tail_ESS are effective sample size measures, and Rhat is
scale reduction factor on split chains (at convergence, Rhat
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Introduction to Exposure-Response Analysis

Fitted logistic regression model: posterior predictive
check
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Introduction to Survival Analysis
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Introduction to Survival Analysis

What is Survival Analysis?

> Statistical method to analyze time-to-event data
» Commonly used in medical research and social sciences
» Deals with predicting the time until an event occurs

©2023 4 December 2023
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Introduction to Survival Analysis

What is time-to-event data?

> In clinical studies, we often measure the time to a specific event:

>

VVVyVYYVYY

time to death

time to disease worsening

time to incident adverse event

time to abnormal lab value (e.g., AST > 3xULN)
time to infection

time to study discontinuation

duration of hospital visit
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Introduction to Survival Analysis

Three essential components

» Well-defined event
» Clear time origin
» Defined time scale

What might be an event definition and time origin for time to disease
worsening in a clinical trial?
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What makes TTE data different?

> For some subjects, we may not observe an event
> The time to event is censored
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Introduction to Survival Analysis

A little notation

» There are two time-to-event processes happening:

> T =time to event of interest
> C =time to censoring

» With right censoring, we observe
> T* = min(T,C)
> §=I(T<0C)

> We are trying to estimate the distribution of T, but we observe T*
> We'll return to this when discussing model diagnostics

» Typical to assume that T and C are independent

©2023 4 December 2023 25/152



Introduction to Survival Analysis

Types of censoring

» Right censoring
> We know the event did not happen prior to time b (i.e., we know
T>Db)
> Left censoring
> We know the event happened before time a (i.e., we know T < a)
> Interval censoring
» We know the event happened between times a and b but not the
exacttime (i.e,a < T < b)
» In clinical trials, we most often deal with right and interval
censoring
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Introduction to Survival Analysis

How does censoring introduce complexity?

> If we observed event times for all subjects, we could use
‘standard’ methods
» Hard to estimate probability density function when we don’t see all
events happening
> A type of missing data problem
» Working with the hazard function alleviates some of the problems
» Hazard function = instantaneous event rate, conditional on event

happening on or after time t
> h( ) _ hmAt_)O P(t<T<t+At | T>t)

> “conditional on event happenlng on or after time t'’ is what helps
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Introduction to Survival Analysis

Terminology

» Cumulative hazard = total hazard accumulated to time t
> H(t) = [, h(s)ds
> This is the expected number of events to time t (Hosmer,
Lemeshow, and May 2011b)
» Probability density function = instantaneous event risk (aka
density)
> f(t) = limag,o CUSTSHA0
» Survival function = probability of an event happening after time t
> S(t)=P(T>1)
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Introduction to Survival Analysis

Connections

Two important relationships to remember:

» The relation between the survival function and the cumulative
hazard

S(t) = exp{—H(t)}

» We can derive the density function from the hazard and survival
functions

©2023 4 December 2023 29/152



Introduction to Survival Analysis

lllustrating relationships between functions

Some examples to illustrate the relationships between the hazard,
cumulative hazard, density, and survival functions for some parametric
distributions.

©2023 4 December 2023 30/152



Introduction to Survival Analysis

Exponential distribution

The hazard is constant as a function of time: h(t) = A.

From first principles:
> h(t) =\
> H(t) =)t
> S(t) = exp(-\t)
> f(t) =h(t) - S(t) = A exp(-A 1)

©2023 4 December 2023
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Introduction to Survival Analysis

Exponential distribution
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Weibull distribution

The Weibull distribution has two parameters: lambda and gamma
The log hazard is linear in the log of time:

h(t) = YA\™1 <= logh(t) =logy +log A + (v — 1) logt

From first principles:
» h(t) = 7!
> H(t) = \t7
> S(t) = exp(—At7)
> f(t) = h(t) - S(t) = M7 Lexp(—At?)
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Introduction to Survival Analysis

Weibull distribution
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Introduction to Survival Analysis

Non-parametric estimation of survival, cumulative
hazard and hazard functions

> We'll start with non-parametric estimates of S(t) and H(t)

» The most commonly used estimator of S(t) is the Kaplan-Meier
estimator
> aka the product limit estimate
» The most common estimator of H(t) is the Nelson-Aalen
estimator
> Can also estimate S(t) as S/FH(\t) = exp {m}

> This is known as the Fleming-Harrington estimate of S(t)
» Similar, but not identical, to K-M estimate

©2023 4 December 2023 35/152



Basics of Kaplan-Meier estimate
Suppose we have these 10 event times (in days):

## [1] ngqn ngqn nggn nggn ngo+" ngon ng3n nggn nggn "105+"

where a “+” denotes a censored observation.
How would you estimate

» P(T>80)?

©2023 4 December 2023 36/152



Basics of Kaplan-Meier estimate
Suppose we have these 10 event times (in days):

## [1] ngqn ngqn nggn nggn ngo+" ngon ng3n nggn nggn "105+"

where a “+" denotes a censored observation.
How would you estimate
» P(T>80)?
» P(T > 80) = 1 because all event times are after 80 days
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Basics of Kaplan-Meier estimate
Suppose we have these 10 event times (in days):
## [1] "s1" "s1" 88"  "88"  "92+" "92"  "93"  "95"  "Q5"  "105+"

where a “+” denotes a censored observation.

How would you estimate

> P(T>80)7?
> P(T > 80) = 1 because all event times are after 80 days

> P(T > 90)?
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Basics of Kaplan-Meier estimate

Suppose we have these 10 event times (in days):

## [1] ngqn ngqn nggn nggn ngo+" ngon ng3n nggn nggn "105+"

where a “+” denotes a censored observation.

How would you estimate
» P(T>380)7?
» P(T > 80) = 1 because all event times are after 80 days
> P(T > 90)?

» P(T >90) = 6/10 because we know exactly 4 events happened
before 90 days
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Basics of Kaplan-Meier estimate

Suppose we have these 10 event times (in days):

## [1] ngqn ngqn nggn nggn ngo+" ngon ng3n nggn nggn "105+"

where a “+” denotes a censored observation.
How would you estimate
» P(T>380)7?
P(T > 80) = 1 because all event times are after 80 days

>

> P(T >90)?

» P(T >90) = 6/10 because we know exactly 4 events happened
before 90 days

> P(T > 94)?
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Basics of Kaplan-Meier estimate

Suppose we have these 10 event times (in days):

##

[1] ngqn ngqn nggn nggn ngo+" ngon ng3n nggn nggn "105+"

where a “+” denotes a censored observation.

How would you estimate

| 2

>
>
>

v

>

P(T > 80) ?
P(T > 80) = 1 because all event times are after 80 days
P(T > 90)?

P(T > 90) = 6/10 because we know exactly 4 events happened
before 90 days

P(T > 94)?
P(T > 94) =7 We know 3 events happened after 94 days, but what
about the censored time at 92 days?
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Introduction to Survival Analysis

Kaplan-Meier and conditional probability

It turns outs that we can use some basic probability calculations to
estimate S(t) in the presence of censoring.

1. Divide time into distinct intervals (at each event time, 7;)

2. For each interval j,

» Calculate the proportion of subjects with an event (d}), among the
subjects in the risk set for that interval (r;)
> Therisk setattimet=N

> number of events prior to t
» number of censored prior to t

> Calculate the probability of an event after the ji interval, conditional
on no event prior to the interval as 1 — %
3. Estimate S(t) as the product of the conditional probabilities up to
timet

A dl
> Snlt) =TT (1 7)



Kaplan-Meier estimation in R

Fortunately, we don’t have to do that work by hand )

The survfit function in the R package survival does the work for us:

fit0 <- survfit(Surv(TTE, AE_any) ~ 1, data = dat_use)

©2023 4 December 2023 38/152



Introduction to Survival Analysis

Input data structure

#i#t
#i#
#i#
#i#
#i#
#i#
#i#
#i#
##
#i#
#i#
##
#i#
#i#
##
#i#
#i#
#i#

Rows: 180
Columns: 15
Groups: PBO [2]

P P P H PP DL PP LN PPN P

STUDYID
SEXTXT
PTTYPE
USUBJID
PBO
CAVGSS
BWT
STUDYDUR
AEO1
AETOXGR
TTE
ae_any
TTE_SEVERE
AE_any
Quartile

<fct>
<fct>
<fct>
<fct>
<chr>
<dbl>
<dbl>
<dbl>
<int>
<fct>
<dbl>
<lgl>
<dbl>
<dbl>
<chr>

PROTA, PROTA, PROTA, PROTA, PROTA, PROTA, PROTA, PROT
MALE, MALE, MALE, MALE, MALE, MALE, MALE, MALE, MALE,
HV, HV, HV, HV, HV, HV, HV, HV, HV, HV, HV, HV, HV, E
UID-001, UID-002, UID-003, UID-004, UID-005, UID-006,
"pBO", "PBO", "PBO", "TRT", "TRT", "TRT", "PBO", "TRI
0.0000000, 0.0000000, 0.0000000, 1.9847466, 1.365786°
77.36278, 82.95064, 83.85795, 77.99817, 87.71328, 77.
2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2, 2,
o, 0, 0, 0, 0,1, 1, 0, O, 0,0 O, O, O, O, O, O, O, 1,
Mild, Mild, Mild, Mild, Mild, Severe, Severe, None, D
0.035762378, 0.011968416, 0.902641754, 0.762268355, (
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE
2.00000000, 2.00000000, 2.00000000, 2.00000000, 2.00C
1,1, 1,1, 1, 1,1, 0,1, 1, 1, 0, 1, 0, O, 1, 1, 1,
"pBO", "PBO", "PBO", "Q4", "Q3", "Q3", "PBO", "Q3", "
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Introduction to Survival Analysis

Input data structure

The data includes exposure as continuous (CAVGSS) and discrete
(Quartile) columns.

## # A tibble: 180 x 6

## # Groups: PBO [2]

## PBO USUBJID TTE AE_any CAVGSS Quartile
## <chr> <fct> <dbl> <dbl> <dbl> <chr>

## 1 PBO UID-001 0.0358 1 0 PBO
## 2 PBO UID-002 0.0120 1 0 PBO
## 3 PBO UID-003 0.903 1 0 PBO
## 4 TRT UID-004 0.762 1 1.98 Q4
## 5 TRT UID-005 0.313 1 1.37 Q3
## 6 TRT UID-006 0.0657 1 1.41 Q3
## 7 PBO  UID-007 0.0707 1 0 PBO
## 8 TRT UID-008 2 0 1.21 Q3
## 9 TRT UID-009 1.9 1 2.22 @4
## 10 TRT UID-010 1.9 1 0.383 Q1

## # i 170 more rows
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Introduction to Survival Analysis

Kaplan-Meier estimation in R

fit0 <- survfit(Surv(TTE, AE_any) ~ 1, data = dat_use)

» The Surv(time, event) function creates a survival response
object
> time = event or censoring time
> event = event indicator (1=event, 0 = right censored)
> More complex types of censoring can be handled

» RHS of formula cannot include continuous variables (Why?)

> This is okay: survfit (Surv(TTE, AE_any) ~ Quartile,
data=dat_use)

» This is not: survfit (Surv(TTE, AE_any) ~ CAVGSS,
data=dat_use)

©2023 4 December 2023
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Basic Survfit output

The survfit object gives us some basic information:

print (£it0)

## Call: survfit(formula = Surv(TTE, AE_any) ~ 1, data = dat_use)
##

## n events median 0.95LCL 0.95UCL
## [1,] 180 132 0.32 0.139 0.649
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More Survfit output

We can get more detail and predicted values with summmary

summary (£it0, times = seq(0, 1, by = 0.25))

## Call: survfit(formula = Surv(TTE, AE_any) ~ 1, data = dat_use)
#it
## time n.risk n.event survival std.err lower 95, CI upper 95%, CI

## 0.00 180 0 1.000 0.0000 1.000 1.000
## 0.25 94 86 0.522 0.0372 0.454 0.601
## 0.50 80 14 0.444 0.0370 0.377 0.523
## 0.75 73 7 0.406 0.0366 0.340 0.484
## 1.00 67 6 0.372 0.0360 0.308 0.450

©2023 4 December 2023
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Introduction to Survival Analysis

Plotting the estimated survival function

The survminer: : ggsurvplot function provides clean plots

survminer: :ggsurvplot (fit0, risk.table = TRUE, data = dat_use)
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Introduction to Survival Analysis

Let's explore effects of exposure on survival

First, what does our exposure data look like? CAVGSS is Caygss, the
average concentration over a dosing interval at steady state.

6. [ ]
% ‘
g 4
<
O
) é
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PBO Q1 Q2 Q3 Q4
Quartile
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Introduction to Survival Analysis

Exposure-response using exposure quartiles

=k Quartile=PBO =+ Quartile=Q1 =+ Quartile=Q2
Strata
=k Quartile=Q3 =+ Quartile=Q4
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Introduction to Survival Analysis

Summary measures of S(t)

» Median time to event (black

dashed line)
» Event rate at time t (blue 0
dashed line) 2 0.75
> Restricted mean survival 3
time (RMST) to t* S 0501
» (Unrestricted) mean ‘_g
survival may not be % 0.251

well-defined
» RMST is the average
event-free time up to t*
» Equivalent to the area
under S(t) from 0 to t*

©2023

0.001

Strata == All
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Summary measures of S(t) in R: median

» Median time to event

quantile(fit0O, probs = 0.50) %>% unlist(Q)

## quantile.b50 lower.50 upper .50
##  0.3200023 0.1393874  0.6492904

©2023 4 December 2023 48 /152



Introduction to Survival Analysis

Summary measures of S(t) in R: percentile

» Percent surviving to times t=c(0,1,2)

summary (£it0, time = c(0, 1, 2))

## Call: survfit(formula = Surv(TTE, AE_any) ~ 1, data = dat_use)
##

## time n.risk n.event survival std.err lower 95, CI upper 95%, CI

## 0 180 0 1.000 0.000 1.000 1.000
## 1 67 113 0.372 0.036 0.308 0.450
## 2 59 8 0.328 0.035 0.266 0.404
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Summary measures of S(t) in R: RMST

» Restricted mean survival time

print(£it0, rmean = 2)

## Call: survfit(formula = Surv(TTE, AE_any) ~ 1, data = dat_use)
##

#i# n events rmean* se(rmean) median 0.95LCL 0.95UCL
## [1,] 180 132 0.836 0.0659 0.32 0.139 0.649
#i# * restricted mean with upper limit = 2

print (fit0, rmean = 4)

## Call: survfit(formula = Surv(TTE, AE_any) ~ 1, data = dat_use)
##

## n events rmean* se(rmean) median 0.95LCL 0.95UCL
## [1,] 180 132 1.4 0.128 0.32 0.139 0.649
## * restricted mean with upper limit = 4

©2023 4 December 2023
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Introduction to Survival Analysis

Comparing two survival curves

» Hazard ratio

» Most commonly used measure of effects
> Closely tied to the Cox model

» Difference or ratio of median survival

> Simple measure, easily understood
» Connection to accelerated failure time models

» Difference or ratio of RMST
> Re-emerging with treatments providing long-term cure fractions

Which one(s) you use depends on which aspects of the survival
distribution are important
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Introduction to Survival Analysis

Are these survival distributions the same?

Group — Reference — Treatment

Scenario 1

Scenario 2

Scenario 3

1.00+

°
3
a

o
N
al

HR: 3.38

Surviving fraction
o
a1
o

Med. diff: =1.00

RMST diff: -0.737
0.00+

HR: 3.87
Med. diff: 0.00
RMST diff: -0.0775

HR: 7.87
Med. diff: -1.00
RMST diff: -0.433
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Introduction to Survival Analysis

Testing for differences in survival functions

Ho : So(t) =3 (t) VS Hy : So(t) 75 S (t)

> Log rank test

> Equivalent to Mantel-Haenszel test for binary data, where
stratification is at unique event times

> Most powerful test when the hazard ratio is constant (but
applicable even if it is not)

> Gives relatively higher weight to later differences in S(t)

» Generalized Wilcoxon test

> A weighted version of the log-rank test with weights proportional to
the number at risk

> Gives relatively higher weight to early differences in S(t)

» Thus, more sensitive when differences in survival occur early
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Introduction to Survival Analysis

Compare exposure quartiles using summary measures

km_exp <- survfit(Surv(TTE, AE_any) ~ Quartile, dat = dat_use)
print (km_exp)

## Call: survfit(formula = Surv(TTE, AE_any) ~ Quartile, data = dat_use)
##

## n events median 0.95LCL 0.95UCL
## Quartile=PB0O 31 21 0.394 0.1172 NA
## Quartile=Q1 38 23 0.602 0.1061 NA
## Quartile=Q2 37 25 0.136 0.0392 NA
## Quartile=Q3 37 29 0.325 0.1503 1.529
## Quartile=Q4 37 34 0.154 0.1012 0.735
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Introduction to Survival Analysis

Compare exposure quartiles using summary measures

=k Quartile=PBO =+ Quartile=Q1 =+ Quartile=Q2
Strata
=k Quartile=Q3 =+ Quartile=Q4

1.00
> 0.75
=
©
Qo
o
5050
3 "
= 1 1
= 1 L
9 0.25

0.00

2

Time
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Introduction to Survival Analysis

Compare exposure quartiles using log-rank test

survdiff (Surv(TTE, AE_any) ~ Quartile, data = dat_use)

## Call:
## survdiff (formula = Surv(TTE, AE_any) ~ Quartile, data = dat_use)
##

#Hit N Observed Expected (0-E)~2/E (0-E)~2/V
## Quartile=PBO 31 21 23.9 0.3581 0.440
## Quartile=Q1 38 23 30.1 1.6677 2.171
## Quartile=Q2 37 25 26.5 0.0802 0.103
## Quartile=Q3 37 29 27.8 0.0555 0.071
## Quartile=Q4 37 34 23.8 4.3986 5.458
#i#

## Chisq= 6.7 on 4 degrees of freedom, p= 0.2
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Semi-parametric and parametric TTE models
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Semi-parametric and parametric TTE models

Semi-parametric models for TTE data

» Cox Proportional hazards model (the Cox model)
> Baseline hazard is not estimated directly

» Connection to Poisson model
» Breslow’s formulation

> Piecewise exponential as a simplification

» Smooth baseline hazards

> Provides a similar (though not identical) model with the ability to
simulate
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Cox PH model

Originally proposed by Cox in 1972 Cox (1972)
Model

h(t) = h()(t) exp(01X1 —+ ... Hpo)

Note: there is no intercept in the exponential ... why?

ho(t) is referred to as the baseline hazard

> ho(t) >0
> The baseline hazard function is not specified
> We'll see that it does not need to be specified in order to estimate 6

> The covariate effects modify the hazard proportionately

» The covariate model is linear in the parameters
> Similar to the linear predictor we saw in logistic regression
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Semi-parametric and parametric TTE models

Connection to survival function

S(t) = exp{—/oth(s) ds}

Then, under the Cox model we have

Recall that

S(t) = exp {— /O ' ho(s) exp(61x,) ds}

= exp {— exp(91X1) HO(t)}
— {So(t) }exp(6’1X1)

where Sy (t) = exp {—Ho(t)} is the baseline survival function
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Example of proportional hazards

05 1.0
0.4
0.8
E 3
ﬁ 0.3 g
N 2
=3
T 0
0.2 0.6
0.1
0.4
0 1 2 3 4 0 1 2 3 4
Time Time
©2023

4 December 2023 61/152



Semi-parametric and parametric TTE models

Parameter estimation

Cox proposed using a partial likelihood approach, treating the baseline
hazard as an infinite dimensional nuisance parameter.

This yields the likelihood function (assuming unique event times):

where

> there are k unique event times
> R(j) is the set of subjects at risk for an event at t(j)

Note that the product is only over the k events, not over all subjects.

©2023 4 December 2023 62 /152



Semi-parametric and parametric TTE models

Parameter interpretation

Suppose we have the model
h(t) = ho(t) exp(01X1 + 62X2)
where x; is binary and x; is continuous.

» Then, e! represents the hazard ratio comparingx; = 1tox; =0
> 0, represents the log hazard ratio

> e’ represents the hazard ratio for a one unit difference in x»
> exp(fs x d) represents the hazard ratio for a d unit difference in x
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Semi-parametric and parametric TTE models

Example model

As an example, let’s fit the model:
h(t) = ho(t)exp {61 - Q1 + 02 - Q2+ 03 - Q3 + 04 - Qu}

where the covariates Qy, ..., Q4 are indicators for exposure quartile

0 — 1 CAVGSS in quartile j
7710 otherwise

Questions:

» What does hy(t) correspond to?
» What does 6; correspond t0?
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Semi-parametric and parametric TTE models

Estimation of the Cox model in R

To fit the Cox model in R, we'll use the coxph function from the
survival package:

fitl <- coxph(Surv(TTE, AE_any) ~ Quartile, data = dat_use)

» Similar LHS as used with survfit (for K-M estimate)

» RHS can include factor or continuous variables
» Character variables are converted to factors
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Output from coxph

pr

##
#i#
#i#
#i#
#i#
#i#
#i#
#i#
#i#
##
#i#

int (fit1)

Call:

coxph(formula = Surv(TTE, AE_any) ~ Quartile, data =

QuartileQ1
QuartileQ2
QuartileQ3
QuartileQ4

Likelihood

coef exp(coef) se(coef)

-0.13566  0.87314
0.06989 1.07239
0.18586 1.20425
0.50397 1.65528

ratio test=6.39 on

n= 180, number of events= 132

0.30201
0.29661
0.28771
0.27983

z p

-0.449 0.6533

0.236 0.8137
0.646 0.5183
1.801 0.0717

4 df, p=0.1717

> Hazard ratio comparing Q1 to placebo: 0.873 (0.483,1.58)
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Semi-parametric and parametric TTE models

Estimation of the baseline cumulative hazard function
from a Cox model

» Recall, estimation of covariate effects did not need an estimate of
ho(t)
» However, we can obtain a post-hoc estimate of Hy(t) and Sy(t)

b;
jt)<t ZieR(i) eXp(élxu +... épxp,-)

Ho(t) =

where

> t(j) are the ordered unique event times
> R(j) is the set of subjects at risk for an event at t(j)
» D; is the number of events at time t(j)
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Semi-parametric and parametric TTE models

Baseline hazard estimation: intuition

Aoy = 3 o

jt(<t 2=ieR() exp(f1X1; + - . . OpXpi)

» With no covariates, this simplifies to the Nelson-Aalen estimator

» With covariates, the denominator is the counter-factual number of
subjects at risk had all subjects been in the reference group

The baseline survival function is SAD(t) = exp {—FI\O(t)}

The subject-specific survival function is

Si(t) = [So(t

~ [/\ :|exp(élxli+-~~+épxp,-)
0
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Semi-parametric and parametric TTE models

Model evaluation for the Cox model

Our primary model evaluation tools will be:

» Comparing model predicted and observed survival

» Martingale and deviance residuals for functional form of covariate
effects

» Assessing the PH assumption
» Concordance / Harrell’'s C-index
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Comparing model predicted and observed survival

To extract predicted survival curves from a Cox model, we'll use the
survfit function

# One line per unique covariate pattern
dat_pred <- dat_use %>%
arrange (Quartile) %>Y%
distinct(Quartile)

# Use survfit to extract predicted survival function

# survfit0 adds time=0 to the predictions; helps with plotting

cox_preds_fitl <- survfit(fitl, newdata = dat_pred) %>%
survfit0()
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Semi-parametric and parametric TTE models

Comparing model predicted and observed survival

To extract predicted survival curves from a Cox model, we'll use the
survfit function

head(cbind(cox_preds_fitl$time, cox_preds_fitl$surv))

#i#
#i#
#i#
#i#
#i#
##
#i#

[1,]
[2,]
[3,]
[4,]
[5,]
[e,]

O O O O OO

.0000000000
.0008052808
.0019346783
.0022448385
.0023020837
.0030770114

1

.0000000
.9952417
.9904835
.9857236
.9809590
.9761791

©2023

2

.0000000
.9958441
.9916857
.9875233
.9833542
.9791693

O O O O O -

3

.0000000
.9948982
.9897981
.9846981
.9795947
.9744769

4

.0000000
.9942727
.9885509
.9828328
.9771146
.9713839

4 December 2023

O O O O O -

5

.0000000
.9921360
.9842966
.9764792
.9686788
.9608783
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Semi-parametric and pai

Comparing model predicted and observed survival

Strata =~ Quartie=PBO =~ Quartile=Q1 =~ Quartile=Q2 = Quartie=Q3 = Quartile=Q4

survival_preds_fitl <- cox_preds_fiti$surv %>%

as.data.frame() %>% .
mutate(time = cox_preds_fitl$time) %>% o
pivot_longer(cols = -time) %>% 0.50
mutate ( i; 025
group = as.numeric(name), L000
Quartile = pasteO(dat_pred$Quartile [groupl) g
) Z100
2
5 075
ggsurvplot (survfit (Surv(TTE, AE_any) ~ Quartile, data = 050
data = dat_use
)$plot + 0%
geom_step( 0.00
data = survival_preds_fitl,
aes(x = time, y = value), linetype = "dashed"
)+

facet_wrap(~Quartile)
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Martingale residuals

The Martingale residual is defined as

where

5 — 1 event
"7 )0 censored

and T* is the observed event or censoring time

Because H(t) is is expected number of events according to the model,
the Martingale residual is an "observed - expected” type of residual.

Often asymmetric due to the fact that M; € (—o0, 1)
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Semi-parametric and parametric TTE models

Deviance residuals

The deviance residual is defined as

D — sign(M,-)\/ ~2 (M + 6 log F(T)

» More symmetric than Martingale residuals
» Roughly have mean=0 and sd=1
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Uses for Martingale and Deviance residuals

> Plot vs linear predictor to °
assess exponential link 5?2
» Plot vs covariate to assess 2. aie Tl
functional form 8 ==
. < 0
» If model is correct, should g
see no trends -1 . N
) -2 Y ‘ Y Y
dat_use <- dat_use %>% % é%dyweighl (k(?)0 *
ungroup() %>%
mutate(dev_resids = residuals(fitl, type = "deviance"))

ggplot(dat_use, aes(x = BWT, y = dev_resids)) +
geom_point() +
geom_point () +
geom_smooth() +
labs(x = "Body weight (kg)", y = "Deviance residual")
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Semi-parametric and parametric TTE models

Assessing PH assumption

» Plot standardized Schoenfeld residuals vs time

> Shows how coefficient changes with time
> Flat line if PH model is correct

> Test for significance of including time-by-covariate interactions in
the model
» Compare predicted and observed survival
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Semi-parametric and parametric TTE models

Assessing PH assumption: example

assess_ph_fitl <- cox.zph(fitl)

print(assess_ph_fitl)

#i#

chisq df P

## Quartile 23.3 4 0.00011
## GLOBAL 23.3 4 0.00011

> This is the score test for adding a
time-by-covariate interaction.

» Indicates a violation of the
PH assumption

> Also suggested by the plot
of the standardized
Schoenfeld residuals vs
time

©2023

Beta(t) for Quartile

plot(assess_ph_fitl)
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Semi-parametric and parametric TTE models

Concordance as a measure of model fit

Concordance is a measure of how well the predicted risk of an event
aligns with the observed risk.

Imagine you have two randomly selected subjects i and j with
» Covariates x; and x;
> Risk scores: 7; = x/6 and nj; = x/0
> (True) event times: T; and T;

Then concordance (c-index) estimates: P(T; > T; | n; < 1)

Harrell et al. Harrell et al. (1982) proposed a method for handling
censored data.

A model with higher c-index should provide better predictions.
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Semi-parametric and parametric TTE models

Cox model as a Poisson regression

It turns out that we can get the same likelihood if we view the data as
arising from a Poisson process with intervals defined by the unique
event times. Whitehead (1980)

» Divide time into non-overlapping intervals with segments defined
by observed event times

» Constant baseline hazard within each interval

This yields another way of thinking about the Cox model as a data
generating model.

» Data are arising from a continuous baseline hazard which we
estimate with piecewise constants

> Piecewise constant hazard = piecewise exponential model
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Semi-parametric and parametric TTE models

Piecewise exponential as an approximation to the Cox
model

» This means that one approximation to a Cox model is

> Piecewise exponential with predefined intervals
> The more intervals, the closer the result is to Cox model

The model is given by
h(t) = ho(t) exp(01x1 + - - - + OpXp)
where
ho(t) = )‘j fort e [77_1,77)

e.g., Ibrahim, Chen, and Sinha (n.d.)
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Semi-parametric and parametric TTE models

Piecewise exponential as an approximation to the Cox
model

The model is given by
h(t) = ho(t) exp(01x1 + - - - + OpXp)

where

ho(t) = )‘j fort e [7']',1,7'1‘)

» How to define the time intervals depends on
> Clinical knowledge (e.g., transplant French, Thomas, and Wang
(2012))
> Time-varying predictors
> Expected number and timing of events
» This formulation provides a semi-parametric model from which
we can simulate survival data
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Semi-parametric and parametric TTE models

Smooth non-parametric baseline hazard functions

> An alternative semi-parametric model is to estimate the baseline
hazard using smoothing splines Royston and Parmar (2002)
> Can be fitted using the flexsurv R package and in brms
» Royston and Parmar Royston and Parmar (2002) propose
9(S(1)) = s(t) + 87x
> s(t) is a smooth function modeled using cubic smoothing splines

> g(S) = log(—log(S)) corresponds to a proportional hazards model
> g(S) =log(1/S — 1) corresponds to a proportional odds model

> brms implementation uses M-splines for the baseline hazard

> M-splines are non-negative and integrate to I-splines
> Simplifies calculations
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Extensions to standard Cox model

» Stratified Cox model
> Allows different baseline hazard by strata
» h(t) = hos(t) exp(B1x1 + -+ + OpXp)
> Often used in primary analysis of TTE endpoints in clinical trials
(e.g., stratify by region)
» Time-varying covariates
> Allows for covariates to be constant over intervals defined by the
data
» Doesn't allow for continuously varying covariates

> Frequently used when conditioning on an intermediate event (e.g.,
Stanford heart transplant data)
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Introduction to Parametric models

» The Cox model was designed to estimate effects of covariates on
the time-to-event distribution.

> With that focus, the baseline hazard isn't of much interest.
» However, in pharmacometric modeling we are often interested in
modeling the full time-to-event distribution
> Both the baseline hazard and covariate effects
> This will be our focus for the next section

> Accelerated failure time models in R and Stan
» General hazard models in Stan
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Traditional parametric models

Many of the commonly used models fall under the accelerated failure
time framework (Wei, Wei (1992))

log(T) = p+6x + ¢

Distribution for ¢ Distribution for T
Extreme value Weibull

Extreme value (scale=1)  Exponential
Normal Log-normal
Logistic Log-logistic

But any distribution for T that has support on values of T > 0 is
suitable, including Gompertz, Gamma, Generalized Gamma, etc.

Nice, conceptual introductions to (parametric) TTE modeling are by
Holford (2013) and Bradburn et al. (2003)
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AFT vs PH models

> Covariate effects in AFT models are fundamentally different than
in PH models

» In a PH model, a covariate scales the hazard function
> h(t) = ho(t) exp(6x)
> S(t) = Sp(t)xP(®)
» In an AFT model, a covariate scales time
> logT=pu+60x+c¢
> S(t) = Sy(ct), where c = exp(fx) is the acceleration factor
> The covariate effect is on the percentiles of the distribution

Percentile whenx=1 __ 1 :
> Percentile whenx=0 ~— ¢ for all percentlles
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Semi-parametric and parametric TTE models

Features of common distributions

» Exponential
> Hazard is constant
»> One parameter
» Weibull, Gompertz, and Gamma
» Two parameters (scale/location and shape)
» Hazard in monotonically increasing or decreasing
> Log-logistic and log-normal
> Two parameters (scale/location and shape)
> Hazard is uni-modal
> Falling, or arc (rising then falling)
» Generalized Gamma

> Three parameters (scale/location and shape)
> Monotonic (increasing or decreasing); arc; bathtub
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Semi-parametric and parametric TTE models

Likelihood for parametric survival models

Assuming that censoring times are independent of event times, then
the individual contribution to the likelihood function is

L(0) f( 2 foro; =1
S(Tr) foré=0

]

and the likelihood function is
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Semi-parametric and parametric TTE models

Fitting parametric TTE models in R

» The survreg() function in the survival package
» The flexsurvreg() function in the flexsurv package

We generally use the flexsurv package because there are more
distributions available
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Semi-parametric and parametric TTE models

Model evaluation

> Residual plots
» Similar use as with the Cox model

» Simulation-based diagnostics

» VPCs for survival and hazard functions
> NPDEs
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Semi-parametric and parametric TTE models

Numeric model comparison

» AIC and friends
» C-index
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Parametric exposure-response TTE models using brms

Table of Contents

© Parametric exposure-response TTE models using brms
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Parametric exposure-response TTE models using brms

A little notation

» There are two time-to-event processes happening:

> T =time to event of interest
> C =time to censoring

» With right censoring, we observe
> T* =min(T,C)
> §=I(T<C)

> We are trying to estimate the distribution of T, but we observe T*
> We'll return to this when discussing model diagnostics

» Typical to assume that T and C are independent
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Parametric exposure-response TTE models using brms

New dataset

» Models for change in tumour size, appearance of new lesions
and survival probability in patients with advanced epithelial
ovarian cancer (Zecchin et al. 2016)

» DDMORE repository submission IDs: DDMODEL00000217,
DDMODEL00000218

> Data simulated from these models

> Original study

> Patients with platinum-sensitive recurrent ovarian cancer

> Randomly assigned to receive gemcitabine plus carboplatin (Cb+G)
or carboplatin alone (Cb), every 21 days

> Primary objective was to compare progression-free survival (PFS)

» We will analyze overall survival (OS) and the relationship between
tumor changes and OS, using simulated data

©2023 4 December 2023 94 /152



Parametric exposure-response TTE models using brms

OS by treatment group

Strata == Group=Cb == Group=Cb+G

1.00
2
= 0.75
<
Qo
[
S 0.50
©
2
>
5 0.25
%)
0.00
0 250 500 750 1000
Time (days)

» Number at risk
%  Group=Cb{ 168 156 72 17 2
5 Group=Cb+G{_168 155 66 20 5

0 250 500 750 1000

Time (days)
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Landmarked OS at Day 84 by change in tumor size and

group

Strata =+ Q1 == Q2 =+ Q3 =~ Q4

Group: Cbh | | Group: Cb+G

1.00
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Distribution of change in tumor size to Day 84
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Parametric exposure-response TTE models using brms

What hazard function might make sense?

4 — Cb
—— Cb+G

0.008

Hazard Rate
0.004 0.006
!

0.002
|

0.000
|

o

200 400 600

Follow-up Time
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Parametric exposure-response TTE models using brms

Let's start by fitting a Weibull model as a function of
relative tumor size (RTS)

weibull_prior <- c(
brms: :prior(lognormal(0, 3), class = "shape"),
brms: :prior(normal(0, 3), class = "b")

)

fit_weibull <- brms::brm(TIME | cens(1 - DV) ~ I(rts84 - 1),
data = dos84,
prior = weibull_prior,
family = brms::weibull()

)

The model is
log TIME; = 6o + 61 X (RTS; — 1) + ¢

where ¢ ~ extreme value distribution

6o corresponds to the mean OS on the log scale when RTS=1 (exp(6y) is the median 0S); 6; is the
acceleration factor
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Output from Weibull model

## Family: weibull

##  Links: mu = log; shape = identity

## Formula: TIME | cens(1 - DV) ~ I(rts84 - 1)

## Data: dos84 (Number of observations: 336)

## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

## total post-warmup draws = 4000

##

## Population-Level Effects:

#i# Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 6.18 0.04 6.10 6.26 1.00 4331 2988
## Irts84M1 -0.42 0.08 -0.58 -0.25 1.00 2765 3096
##

## Family Specific Parameters:

#i# Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

## shape 2.04 0.11 1.82 2.27 1.00 3595 3271

##

## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Parametric exposure-response TTE models using brms

Model evaluation

> Residual plots
> Similar use as with the Cox model
» Simulation-based diagnostics

> Visual predictive checks (VPCs) for survival and hazard functions
> NPDEs
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Parametric exposure-response TTE models using brms

Posterior predictive checks

» Simulate many replicates of the DV using the estimated model
and observed predictors
> Accounting for censoring process

» Determine summary statistic(s) of interest

> K-M estimate of S(t)
> Non-parametric estimate of h(t)
» Mean covariate value among subjects at risk

Calculate summary statistic for observed data

Calculate summary statistic for each simulated replicate
Plot distribution(s) of summary statistics

Overlay observed value

vVvyyvyy
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Parametric exposure-response TTE models using brms

Simulate survival times from model

weibull_sims <- add_predicted_draws(
newdata = dos84 %>% select(ID, rts84, rts84_f, ECOG),
fit_weibull,
value =

##
##
##
##
##
##
##
##
##
##

# A tibble:

# Groups:
rts84
<dbl>

o O W N

ID
<dbl>

e e

[elelNelNeNe Nl

.629
.629
.629
.629
.629
.629

"survival_time"

6 x7
ID, rts84, rts84_f, ECOG,

rts84_f ECOG

<chr>

Q2
Q2
Q2
Q2
Q2
Q2

<dbl>

N

.row .draw survival_time
<dbl>
680.
400.
577.
581.
413.
1019.

<int>

BB R R e e

<int>

o G WN -

.row [1]

These are simulations of T. To reflect the changing risk-set it is often advisable to also simulate

censoring times to get to T* = min(T, C)
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Options for distribution of C

» Kaplan-Meier estimator
» Cox model
» Parametric model

» Do not use observed event times to censor simulated times
> Mixture of event and censoring distributions
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Time to censoring of OS

ggsurvplot (survfit (Surv(TIME, 1 - DV) ~ ECOG, data = dos84),

fun = "event",
ylab = "Proportion censored",
data = dos84
)
Strata =+ ECOG=0 =+ ECOG=1
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o
2
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c
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Parametric exposure-response TTE models using brms

Fit log-normal model for censoring distribution

fit_censoring <- brms::brm(

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

TIME | cens(DV) ~ ECOG,
data = dos84,
family = brms::lognormal()

Family: lognormal
Links: mu = identity; sigma = identity
Formula: TIME | cens(DV) ~ ECOG
Data: dos84 (Number of observations: 336)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Population-Level Effects:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 6.36 0.04 6.28 6.44 1.00 3153 2829
ECOG -0.21 0.06 -0.33 -0.10 1.00 3524 3016

Family Specific Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 0.45 0.03 0.40 0.50 1.00 2653 2791

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
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Parametric exposure-response TTE models using brms

Simulate censoring times and derive the event time

censoring_sims <- add_predicted_draws(
newdata = dos84 %>% select(ID, rts84, rts84_f, ECOG),
fit_censoring,
value = "censoring_time"

event_sims <- weibull_sims %>’
left_join(censoring_sims) %>
mutate(
event_time = pmin(survival_time, censoring_time),
delta = survival_time < censoring_time

## # A tibble: 6 x 10
## # Groups: ID, rts84, rts84_f, ECOG, .row [1]

## ID rts84 rts84_f ECOG .row .draw survival_time censoring_time event_time
## <dbl> <dbl> <chr> <dbl> <int> <int> <dbl> <dbl> <dbl>
## 1 1 0.629 Q2 1 1 1 680. 322. 322.
## 2 1 0.629 Q2 1 1 2 400. 492. 400.
## 3 1 0.629 Q2 1 1 3 B77. 629. B77.
## 4 1 0.629 Q2 1 1 4 581. 283. 283.
## 5 1 0.629 Q2 1 1 5 413. 1026. 413.
## 6 1 0.629 Q2 1 1 6 1019. 510. 510.
## # i 1 more variable: delta <lgl>
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Parametric exposure-response TTE models using brms

Summary statistic: Kaplan-Meier estimate of S(t)
stratified by RTS quartile

vpc_stat_km <- function(.data, pred_times = NULL) {
fit <- survfit(Surv(time, event) ~ rts84_f, data = .data)
if (is.null(pred_times)) {
pred_times <- c(0, sort(unique(fit$time)))
3

preds <- summary(fit, times = pred_times)

data.frame(pred_times = preds$time, preds = preds$surv,
group = preds$strata)
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Parametric exposure-response TTE models using brms

Calculate K-M estimator for observed and simulated

data

obs_surv <- vpc_stat_km(dos84 %>/, mutate(time = TIME, event = DV))

Apply the summary statistic to each simulated dataset

sim_surv <- event_sims %>%
mutate(time
nest(data = -.draw) %>
mutate(km_est = map(data,

event_time, event = as.numeric(delta)) %>%

~ vpc_stat_km(., pred_times = sort(unique(obs_surv$pred_times))))) %>%

select(-data) %>%
unnest(cols = km_est)
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Parametric exposure-response TTE models using brms

Plot survival function VPC

rtsg4_f=Q1 rts84_f=Q2
1.00-
p <- sim_surv %>% 0.75-
group_by(pred_times, group) %>% < 0.50-
summarise ( %025
med = mean(preds), Eo.00-
lcl = quantile(preds, é’mo' 1ts84_=Q3 rts84_f=Q4
probs = 0.05), o
— s =T
ucl = quantile(preds, D 5.
probs = 0.95) 0.25]
) W 0.00-
ggplot(aes(x = pred_times)) + 0 250 500 750 10000 250 500 750 1000
geom_step(aes(y = med), color = "red") - Time (days)

geom_ribbon(aes(ymin = lcl, ymax = ucl), fill = "red", alpha = 0.2) +
geom_step(data = obs_surv, aes(y = preds)) +

facet_wrap(~group) +

ylim(0, 1) +

labs(x = "Time (days)", y = "Surviving fraction")
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Parametric exposure-response TTE models using brms

Summary statistic: hazard function

vpc_stat_hazard <- function(.data, .maxtime = NULL) {
grid <- seq(0, .maxtime, length = 101)

if (!is.null(.maxtime)) {
fit <- with(.data, muhaz(time, event,
min.time = 0, max.time = .maxtime))
} else {
fit <- with(.data, muhaz(time, event,
min.time = 0))

}
# Impute at grid times in case muhaz uses different estimation points
# —-— Impute NA if .maxtime is beyond last event time

haz <- approx(x = fit$est.grid, y = fit$haz.est, xout = grid, rule = 1)

data.frame(pred_times = grid, preds = haz$y)
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Parametric exposure-response TTE models using brms

Apply to observed and simulated data

We will estimate the hazard until only 5% of subjects remain at risk.

endtime <- dos84 %>%
arrange (TIME) %>%
slice(floor(.95 * n())) %>%
pull(TIME)

obs_hazard <- dos84 %>%
rename (time = TIME, event = DV) %>%
nest(data = -rts84_f) %>%
mutate(hazard = map(data,
~ vpc_stat_hazard(.data = ., .maxtime = endtime))) %>%
select(-data) %>’
unnest (hazard)
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Apply to simulated data

Apply the summary statistic to each simulated dataset

sim_hazard <- event_sims %>/
mutate(time = event_time, event = as.numeric(delta)) %>%
filter(.draw <= 500) %>%
arrange(.draw, rts84_f) %>%
nest(data = -c(.draw, rts84_f)) %>%
mutate(hazard = map(data, ~ vpc_stat_hazard(., .maxtime = endtime))) %>%
select(-data) %>%
unnest(cols = hazard)
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Plot hazard function VPC

Q1 Q2
0.020-
p <- sim_hazard %>% 0.015-
group_by(pred_times, rts84_f) %>% 0.010-
summarise ( 0.005-
_ _ [EE——__ | /
med = mean(preds, na.rm = TRUE), T 0.000
lcl = quantile(preds, %0.0207 Q3 Q4
probs = 0.05, na.rm =T 45
ucl = quantile(preds, 0.010
probs = 0.95, na.rm = .0 //
) Wk 0.000- _ S
ggplot(aes(x = pred_times)) + 0 200 400 600 800 O 200 400 600 800

geom_step(aes(y = med), color = "red") - Time (days)

geom_ribbon(aes(ymin = 1lcl, ymax = ucl), fill = "red", alpha = 0.2) +
geom_line(data = obs_hazard, aes(y = preds)) +

facet_wrap(~rts84_f) +

labs(x = "Time (days)", y = "Hazard")
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Semi-parametric exposure-response TTE models using Stan

Table of Contents

O Semi-parametric exposure-response TTE models using Stan

©2023 4 December 2023 116 /152



Semi-parametric exposure-response TTE models using Stan

Example: progression-free survival in oncology trial

» Clinical trial with 3 treatment arms, with 3-week cycles (Q3W)
1. Titration:
> 1mg/kg for 1 cycle
> 3 mg/kg for 1cycle
> 10 mg/kg for remaining cycles

2. 3 mg/kg Q3W
3. 10 mg/kg Q3W

> 100 subjects per arm

» Endpoint is progression-free survival
> Time from start of treatment to disease progression or death
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Semi-parametric exposure-response TTE models using Stan

Dataset structure: include time to event/censoring

with per-cycle Cavg

## # A tibble: 2,722 x 8

## id cycle week dose
## <dbl> <dbl> <dbl> <dbl>
# o1 1 1 0 1
#H2 1 2 3 3
# 3 1 3 6 10
# 4 1 4 9 10
## 5 1 5 12 10
# 6 1 6 15 10
W7 1 7 18 10
## 8 1 8 21 10
# 9 1 9 24 10
## 10 1 10 27 10

## # i 2,712 more rows

©2023

cooocoooo

quartile
<chr>

Q4
Q4
Q4
Q4
Q4
Q4
Q4
Q4
Q4
Q4

tte event

298
298
298
298
298
298
298
298
298
298

<dbl> <dbl>

N e N = e
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Semi-parametric exposure-response TTE models using Stan

KM by treatment: Some separation between groups

strata = trt=1/3/10 mg/kg =~ trt=10 mg/kg - trt=3 mg/kg

1.00

o o
3 ~
o a

Survival probability

o
N
a

p = 4e-04

0 100 200 300 400
Time
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Semi-parametric exposure-response TTE models using Stan

What to use as an exposure metric?

> “This is a key component of any analysis and may include dose,
concentration, time-averaged concentration, time above a
threshold, or area-related metrics”

> “Be careful of dose adjustments and dropouts, and their effect on
exposure metrics”

> “In choosing a metric consider whether the relationship may be a
direct effect (like nausea/vomiting) or a time delay effect like
tumor growth”

(Ruiz-Garcia et al. 2023)
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Semi-parametric exposure-response TTE models using Stan

This study has a lot of dose adjustments and dropouts

id: 37 id: 79 id: 85 id: 105
107 =
5.
O_J’ I It T
id: 129 id: 167 id: 187 id: 213
104 =
(]
2 s
© T =1 ==
O. (.
id: 217 id: 263 id: 270 id: 277
104 = = =
5.
4 8 12 4 8 12 4 8 12 4 8 12
cycle

©2023 4 December 2023 121/152



Distributions of Cavg by cycle

A single exposure metric won't cut it, but we need something to stratify
KM plot. Let’s go with Cycle 3.

B3 1/3/10 mg/kg B8 10 mg/kg B2 3 mg/kg

151

104

Cavg

- o

3 10 20
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Semi-parametric exposure-response TTE models using Stan

KM plot by Cycle 3 Cavg shows clear
exposure-response

strata =~ quartile=Q1 -~ quartile=Q2 -~ quartile=Q3 - quartile=Q4

1.00

o o
o ~
S a

Survival probability

I
N
a

p < 0.0001

0.00

0 100 200 300 400
Time
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Semi-parametric exposure-response TTE models using Stan

For time-varying exposures we return to the piecewise
exponential (PE) model

Recall: the PE model is given by
h(t) = ho(t) exp(61x1 + - - - + OpXp)

where

ho(t) = )‘j fort e [7']',1,7'1‘)

» How to define the time intervals depends on
> Clinical knowledge (e.g., transplant French, Thomas, and Wang
(2012))
> Time-varying predictors
> Expected number and timing of events
» This formulation provides a semi-parametric model from which
we can simulate survival data
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Semi-parametric exposure-response TTE models using Stan

Typically we explore a variety of linear and nonlinear
functional relationships

h(ty) = ho(ty) exp(f(Cy, 0) + X[ 1)
where:

» h(t;) is the hazard at time t;; for patient /.

» f(Cj) is the functional relationship between exposure and the hazard,
relative to the baseline

> ¢ is a vector of parameters for the exposure sub-model
> Cj is exposure metric of patient i at time t;;
> X is the vector of baseline covariates of patient i

> ~, are the main effects (on the log scale) of X; on the hazard
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Semi-parametric exposure-response TTE models using Stan

Examples of functional forms for ER

f(Ci) = Ciar + CiX[ 2 linear
f(Ci) = log(Ci)ay + log(Ci)X] 2 log-linear
Y = Ty 2
f(Ci) = (Emax + X 2) EC501 C Emax
. c
f(C;) = (Emax + X; 7o) ———'—— Sigmoidal Emax

where:

> - is the vector of coefficients corresponding to the interaction
effect of each covariate with exposure
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Semi-parametric exposure-response TTE models using Stan

The Emax model arises from binding of a drug to a

receptor
) = T
f(Cy) (Enaxﬁ—Xgm)EC50+_Q
1001 1001
751 751
B S
£ 50 £ 501
L w
251 251
01 01

0 25 50 75
Concentration

©2023

100
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Semi-parametric exposure-response TTE models using Stan

Selecting priors for baseline hazards in PE model

A ~ Gamma () /c,1/c)
where:

> )\ is the prior mean
» more on this soon

> c quantifies dispersion
> a large value (c = 100) ensures a non-informative prior

> c)\ is the variance

(Qing, Thall, and Yuan 2023)
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Semi-parametric exposure-response TTE models using Stan

Selecting priors for baseline hazards in PE model

To select prior means A

1. Approximate the PE model with a Weibull distribution
> obtain estimates & and 3

2. Solve for prior means using the sub-interval average:

- 1 Tk . T8 — 18
A = / A(t)dt = M
Tk = Tk=1 Jm_, BTk — Tk—1)

(Qing, Thall, and Yuan 2023)
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Semi-parametric exposure-response TTE models using Stan

Priors for ER parameters are weakly-informative
Normals

Emax ~ N(0,0.5)
EC50 ~ N(jic1,25¢1)

where [icq and ¢ are the mean and SD of Cycle 1 exposures,
respectively
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Stan model: data (1)

// intervals contructed using the following distinct times
// event/censoring times, hazard intervals times,
// and times of when time-varying covariate (exposure)

// number of intervals

int<lower=0> n_intervals;

// id defined such that EXPOSURE[%id], int_length[id] correspond

// to exzposures and interval length values of subject id
array[n_intervals] int id;

// length of each interval

// lag(cumsum(int_length[id])) denotes start time of each interval

// (starting at 0)

// cumsum(int_length[id]) denotes end time of each interval of subject id
vector [n_intervals] int_length;
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Stan model: data (2)

// censoring times and events, N is number of subjects
int<lower=0> N;

// censoring indicator

// 1 no censoring...event

// 0 right censoring

// 2 interval censoring

array[N] int censoring;

// index where left and right censoring occurred
array[N] int rcensindex;

array[N] int lcensindex;

array[N] int begin;

array[N] int end;

array[N] int numrows;
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Stan model: data (3)

// ID of hazard which corresponds to each interval
// lambdal[id_hazard] should corresponds to hazard in intervals
array[n_intervals] int id_hazard;

// exposure metric

// EXPOSURE[td] corresponds to the exposure values at distinct times
// of subjectid

vector [n_intervals] EXPOSURE;
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Stan model: data (4)

// Hyperparameters of EC50 metric
real EC50m;
real ECH0s;

// Hyperparameter for Emax
real Emax_mean;
real<lower=0> Emax_sd;

// Hyperparameter for betaezp
real betaexp_mean;
real<lower=0> betaexp_sd;

// number of hazard intervals

int<lower=0> J;

// hyperparameters for hazard,.i.e lambdal[7j]
vector[J] lambda_hat;

// dispersion parameter

real<lower=0> c;
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Semi-parametric exposure-response TTE models using Stan

Stan model: parameters

array[J] real<lower=0> lambda;
real Emax;
real<lower=0> EC50;
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Stan model: priors

// Priors on ER parameters
target += normal_lpdf(Emax | Emax_mean, Emax_sd);
target += normal_lpdf (EC50 | EC50m, EC50s);

// Prior on lambda
// d0i:10.1002/pst.2256
for (j in 1:J) target += gamma_lpdf(lambdal[j] | lambda_hat[j]l / c, 1/c);
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Stan model: log probability density

for (i in 1:N) {
vector [numrows[i]] 1lp =
Emax * EXPOSURE[begin[i]:end[i]l] ./ (EC50 + EXPOSURE[begin[i]:end[i]]);
vector [numrows[i]] lambda_vec =
(to_vector(lambda) [id_hazard]) [begin[i] :end[i]];
vector [numrows[i]] llcont =
-exp(lp) .* lambda_vec .* int_length[begin[i]:end[i]];
if (cemsoring[i] == 1) {
target += sum(head(llcont, rcensindex[i]-1));
target += lp[rcensindex[i]] + log(lambda_vec[rcensindex[i]]);
}
if (cemsoringl[i] == 0) {
target += sum(head(llcont, rcensindex[i]-1));
}
¥

g
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Semi-parametric exposure-response TTE models using Stan

Fitted model: estimates

##
##
##
##
##
##
##
##
##
##
##

variable
lp__
lambdal[1]
lambda[2]
lambda[3]
lambda[4]
lambda[5]
Emax
EC50

mean

-1564.
.01
.02
.03
.04
.06
.10
.87

[elelNelNeNe)

52

median

-1564.
.01
.02
.03
.03
.06
.10
.72

[elelNeNeNe)

16

O OO O OO O~

sd

.91
.00
.00
.01
.01
.01
.22
.97

O OO OO0 O

mad
.75
.00
.00
.01
01
.01
.23
.87

-1568.
.01
.01
.02
.02
.04
.47
.60

[elelNeNeNe

[are

q5
21

-1562.

d B, O OO0 OO

q95
05
.02
.02
.04
.05
.08
.75
.66

# showing 8 of 308 rows (change via 'max_rows' argument

©2023

rhat ess_bulk ess_tail

1.00
.00
.00
.00
.00
.00
.00
.00

s

1865
1677
1552
1569
1645
1667
2148
1790

2636
2431
2348
2491
2514
2626
2442
2538

or 'cmdstanr_max_rows'
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Semi-parametric exposure-response TTE models using Stan

Fitted model: trace plots

lambda[1] lambda[2] lambda[3]
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lambda[4] lambda[5] Emax Chain
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Fitted model: density plots

Chain — 1 —2 — 3 4

lambda[1] lambda[2] lambda[3]
ZES \
LN
0.010 0.020 0.010 0.020 0.030 0.02 0.04 0.06
0.015 0.025 0.015 0.025 0.03 0.05
lambdal[4] lambdal[5] Emax
P
0.02 004 006003 007 011 -25  -15
0.03 0.05 0.05 0.09 -2.0
EC50
N
N
// .\\777
2 6
4 8

©2023 4 December 2023 140 /152



Semi-parametric exposure-response TTE models using Stan

Fitted model: compare lambdas

[ ] lambda[1] [ | lambda[2] [ | lambda[3] [ | lambda[4] | | lambda[5]

1501
1001
=
[%2]
c
()
©
507
0.
0.03 0.06 0.09
value
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Semi-parametric exposure-response TTE models using Stan

Visual predictive check

— Observed data — Simulated data
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Summary

» Exposure-response analyses play a pivotal role in evaluating
dosing regimens

» Non-parametric and parametric survival analyses have their place
in ER analysis, but semi-parametric models can offer greater
flexibility

> Bayesian semi-parametric methods, particularly the piecewise
exponential model, provide value in cases of time-varying
exposure metrics
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