Population Pharmacokinetic (PK) and Exposure-Response (ER) Analysis of Empagliflozin in Pediatric Patients with Type 2 Diabetes Mellitus (T2DM)

Shen Cheng¹, Janelle Lennie^{1,3}, Brian Reilly^{1,4}, Sonoko Kawakatsu^{1,5}, Katherine Kay¹, Xiaoning Wang¹, Curtis Johnston¹, Igor Tartakovsky², and Valerie $Nock^2$ ¹Metrum Research Group, Tariffville, CT, USA, ²Boehringer Ingelheim Pharma GmbH & Co KG, ³GSK Inc., Philadelphia, PA, USA (current), ⁴Vertex Pharmaceuticals Inc., Boston, MA, USA

(current), ⁵A2Ai Inc., Ann Arbor, MI, USA (current)

Summary

- Empagliflozin is a potent and highly selective oral sodium-dependent glucose transporter-2 (SGLT-2) inhibitor for the treatment of type 2 diabetes mellitus (T2DM) in adults and pediatrics [1].
- Study 1218.91 was a double-blind, randomized, placebo-controlled, parallel group trial to evaluate the efficacy and safety of empagliflozin and linagliptin over 26 weeks, with a safety extension period up to 52 weeks, in children and adolescents with T2DM.
- Population PK and ER models previously developed for empagliflozin [2] in adults and adolescents were re-estimated in a Bayesian framework to characterize the PK and ER (glycosylated hemoglobin (A1c) lowering) using the pediatric data from Study 1218.91 and assess any differences in relation to adult.
- Similar empagliflozin exposures are achieved for a 10 mg dose in pediatric and adult subjects.
- Pediatric patients achieved a slightly larger, but highly variable, placebo-adjusted A1c decrease relative to adults at week 26 (Figure 4: -0.699% vs. -0.528%).

lomogr	'anhice
JEIIIUEI	aunus

Table 1: PK model: Comparison of baseline continuous covariates by study.

Variable	n	Mean	Median	SD	Min / Max
Study 1218.91					
Weight (kg)	74	96.6	90.0	26.2	42.5 / 169
Age (years)	74	14.5	14.5	1.90	10.0 / 17.0
Estimated GFR (ml/min/1.73m ²)	74	127	125	25.2	89.7 / 241
Study 1245.87					
Weight (kg)	27	96.8	92.0	23.9	61.7 / 143
Age (years)	27	14.1	15.0	1.99	10.0 / 17.0
Estimated GFR (ml/min/1.73m ²)	27	196	190	68.6	88.0 / 424
Previous Adults					
Weight (kg)	4346	84.1	82.4	19.4	38.7 / 175
Age (years)	4346	57.4	58.0	10.1	19.0 / 98.0

- The PK model included data from 223 observations and 74 patients receiving empagliflozin 10 and 25 mg once daily.
- The ER model included data from 394 observations and 103 patients receiving empagliflozin (N=52) or placebo (N=51).
- The analyses were conducted using Markov chain Monte Carlo (MCMC) Bayesian estimation in NONMEM®.
- The prior distributions were defined from point estimates and uncertainties of the previous adult PK and ER model parameters.
- For PK parameters of primary interest, including CL/F and V2/F, weakly uninformative priors were used.
- The parameter of drug potency for lowering HbA1c was fixed, as in the previous model, while uninformative priors were used for all other ER model parameters.

RESEARCH GROUP

• The Bayesian estimation approach enabled the characterization of empagliflozin PK and ER in a limited sample of pediatric patients and borrowed from what is already known about PK and ER in adults.

Estimated GFR (ml/min/1.73m²) 4346 85.6 84.4 21.7 15.3 / 334

• Covariate effects of interest were incorporated using a full covariate modeling approach.

RESULTS

Figure 1: PK model: Visual predictive check (VPC) for empagliflozin concentration versus time after dose.

- The empagliflozin PK was well-described by a two-compartment model with sequential zero-order and first-order absorption with covariate effects of sex, age, race, and estimated glomerular filtration rate (eGFR) on CL/F, and fixed allometric exponents on CL/F, V2/F, Q/F, and V3/F (Figure 1).

Figure 2: PK model: Distributions of AUCss values from Monte Carlo simulations in adults and pediatric patients using the previous adult PK model and the current pediatric PK model respectively.

References	QR code
[1] Heise, T., Graefe-Mody, E.U., Hüttner, S., Ring, A., Trommeshauser, D. and Dugi, K.A. Pharmacokinetics, pharmacodynamics and tolerability of multiple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients. <i>Diabetes Obes. Metab.</i> 11 (2009):786–794.	
[2] Metrum Research Group. Empagliflozin Simplified Population PK and Exposure-ResponseModeling for HbA1c. Technical Report c37380422-01, Boehringer Ingelheim Pharma GmbH & Co. KG (2022).	

Presented at the American Conference on Pharmacometrics; 5 November - 8 November 2023

Copies available at: www.metrumrg.com/all-publications