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Abstract
Objectives: QSP models characterize the interaction between biological systems and
pharmacologic therapies. As such, they require a wealth of mechanistic knowledge of
the system of interest, which is oftentimes limited, uncertain, and incomplete. Univer-
sal differential equations (UDEs) provide a framework for integrating scientific modeling
with data-driven machine learning approaches, such as deep learning. Within such a
framework, the scientific model provides enough structural knowledge that alleviates the
need for large amounts of data, typically required by deep learning methods. This work
introduces the concept of Deep QSP (DQSP) modeling that applies UDEs to QSP models
using open-source Julia tools. This framework employs deep learning to fill in the gap in
our knowledge of the biological system.
Methods: A simple QSP model of the effect of the antipsychotic drug, remoxipride, on
the lactotroph-prolactin system, was used to demonstrate the proposed framework [1, 2].
The model assumed a positive feedback effect of plasma prolactin on prolactin production
in lactotrophs. This positive feedback was considered unknown and replaced by an arti-
ficial neural network (ANN) in the DQSP framework. Symbolic regression, using sparse
identification of nonlinear dynamics (SINDy), was used to retrieve the actual ‘unknown’
positive feedback effect on the lactotroph-prolactin system dynamics from the trained
ANN. An integrated Bayesian DQSP (BaDQSP) framework was also introduced to quan-
tify the uncertainty around the missing dynamics and the retrieved symbolic term.
Results: Observed versus predicted profiles, loss convergence, and error estimates
showed that the ANN was efficiently trained to replace the unknown dynamics using
a limited training dataset. Symbolic regression was able to retrieve the actual underlying
missing term, which was a saturable positive feedback effect of plasma prolactin on lac-
totroph prolactin production. BaDQSP was able to quantify the uncertainty around the
recovered term and assigned it a probability of 0.712 of being the true missing term.
Conclusions: DQSP/BaDQSP framework was introduced in this work using open-source
tools in Julia. A QSP model for the effect of remoxipride on the lactotroph-prolactin sys-
tem was used as a case study to demonstrate the training of an ANN to replace unknown
dynamics, retrieving the actual dynamics using symbolic regression, and integrating with
Bayesian inference to quantify the uncertainty around the retrieved symbolic term. The
convenience of the proposed DQSP/BaDQSP framework makes it accessible to the audi-
ence interested in applying deep learning and Bayesian analysis to QSP models.

Methods

Figure 1. Generic DQSP workflow. The generic DQSP workflow depends on building the
QSP UDE model based on the domain-specific knowledge of the reaction network and ANNs
to learn the unknown/missing fluxes. Symbolic regression can then follow to recover the
unknown flux underlying dynamics. Bayesian analysis is then used to obtain posterior
probabilities for the ANN and the recovered term (BaDQSP).

Figure 2. Prolactin UDE Model Structure. The UDE model structure for prolactin (PRL)
demonstrates the 2-compartment PK of remoxipride and its effect on stimulating PRL release
from lactotrophs to plasma. A nonlinear positive feedback loop, where plasma PRL stimulates
the production of lactotroph PRL was included in the original model, and synthetic data were
generated from this model. The feedback loop was then assumed missing, and an ANN was
used to learn that missing flux in the UDE model structure. The model was solved using the
Julia open-source package DifferentialEquations.jl.

ANN structure

• an input layer made of 4 nodes (Central, P, R, and R-R0, where R0 = baseline plasma
PRL)

• a hidden layer made of 5 nodes

• an output layer of 1 node representing the feedback flux

The swish activation function was used. The ANN was built using the Julia open-source pack-
ages Lux.jl and DiffEqFlux.jl.

Optimization
Optimization of the ANN was carried out in two consecutive steps where an initial optimization
was carried out using the adaptive moment ADAM optimizer for 5000 iterations to get closer
to the global minimum then the final parameters were used to initialize a second round of opti-
mization using the limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer (LBFGS) for
1000 iterations. Optimization was done using the Julia open-source package Optimization.jl
and the loss function computed least squares between the data and the predictions.

Symbolic regression
Recovering the unknown flux was carried out using SINDy. Automatically generated basis
functions were generated and included second order polynomials of the input variables as
well as a control signal representing the nonlinear dynamics involved in the actual feedback
loop. Symbolic regression was done using the Julia open-source package DataDrivenDiffEq.jl.

Bayesian analysis
Bayesian analysis was carried out using the stochastic gradient Langevin dynamics (SGLD)
algorithm. 1000 warmup and 1000 sampling iterations were utilized.

Results
DQSP framework successfully implemented a UDE that characterized the PK of remoxipride and its effect on PRL release from lactotrophs to plasma. The model also characterized
the positive feedback effect of plasma PRL on lactotroph PRL stimulation using an ANN. The QSP model missing the feedback effect was not able to characterize the plasma PRL data
(Figure 3), while the trained UDE model was able to characterize the PRL data (Figure 4). The two-step optimization of the ANN parameters led to a consistent decrease in the loss
function value throughout a total of 6000 iterations (Figure 5). Since the data was synthetic, we had the opportunity to overlay the trained ANN time-course output to the actual
’unknown’ flux and the ANN was able to successfully learn to be that unknown flux (Figure 6). Bayesian analysis as part of BaDQSP was able to characterize the uncertainty around the
ANN as depicted by the sample losses and posterior predictive checks (Figures 7 and 8, respectively). The posterior probability around the recovered term is demonstrated (Table 1)
where the correct nonlinear flux that was dependent on R−R0 had a probability of 0.712 while a second potential flux had a probability of 0.288. Nevertheless, the lower probability
term still included the correct nonlinear flux.

Figure 3. Data versus initial QSP model predictions without the plasma PRL
feedback. Data and predictions are represented by orange dots and blue line,
respectively.

Figure 4. Data versus trained UDE model predictions. Data and predictions
are represented by orange dots and blue line, respectively.

Figure 5. The loss function value over optimization iterations. Loss function
values decreased for the 6000 iterations of optimization (5000 initial iterations
with ADAM and 1000 subsequent iterations with LBFGS).

Figure 6. ANN prediction versus the ideal flux. The trained ANN time-course
prediction overlaid with the ideal missing positive feedback flux.

Figure 7. The Bayesian analysis loss function value over iterations. Loss
function values for the SGLD Bayesian analysis over 2000 iterations (1000
warmup and 1000 sampling). The optimized parameters from the LBFGS run
were used as initial values for the SGLD algorithm.

Figure 8. PPC for plasma PRL Bayesian analysis. Posterior plasma PRL samples
(red) were overlaid on top of the data (dots). The black line represents the best
fit prediction among the posterior samples.

Table 1. Posterior probability for the possible missing terms. R0 = baseline plasma PRL con-
centration; C = plasma concentration of remoxipride; Emax = maximum positive feedback effect;
EC50 = plasma PRL difference from baseline that achieves 50% of Emax .

Conclusion
• A DQSP framework was introduced in this work that integrates the domain-specific knowledge embedded in a QSP model and machine learning to fill in the gaps in that

knowledge.

• The proposed framework successfully characterized an unknown positive feedback loop in the lactotroph-prolactin system using a UDE model structure as well as retrieving the
actual dynamics from the trained ANN using symbolic regression.

• BaDQSP is an extension to that framework that applies Bayesian analysis to infer a posterior probability of the trained ANN and the underlying unknown term.

• The proposed DQSP/BaDQSP framework was carried out using open-source Julia tools, which makes it accessible to the audience interested in applying deep learning and
Bayesian analysis to QSP models.
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