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Abstract
Objectives: Population pharmacokinetic (PK) modeling is considered the standard ap-
proach to characterize the PK in a given population. This approach incorporates subject
covariates to explain random variability in PK parameters and improve the predictive
performance of the model. Covariate modeling can be a complex process since the un-
derlying structural relationship between covariates and PK parameters is often unknown.
Deep compartment modeling (DCM) was previously proposed to use machine learning
techniques to automate the covariate modeling step [1]. DCM, however, does not eval-
uate any residual error or interindividual variability (IIV). This could lead to model mis-
specification and over-fitting. The work presented here demonstrates Hierarchical Deep
Compartment Modeling (HDCM), which is an extension of DCM. These models utilize
machine learning to characterize the relationship between covariates and PK parameters
while evaluating varying levels of random effects using Bayesian inference.
Methods: Synthetic PK data were used to demonstrate the proposed HDCM framework.
The data were generated from a two-compartment population PK model and were divided
into training (10 subjects) and test (20 subjects) datasets. Standard covariate modeling
was used to characterize the generated individual PK parameters. In the HDCM approach,
an artificial neural network (ANN) was used to learn these covariate relationships. Ran-
dom effects were introduced as measurement noise and IIV on the clearance (CL) param-
eter. The hierarchical Bayesian inference was carried out on the training dataset using the
No-U-Turn Sampler (NUTS) algorithm. Further HDCM validation was carried out using
the test PK dataset. Open-source Julia tools were utilized to build the model (SciML),
train the ANN (Flux.jl), and run the Bayesian inference (Turing.jl).
Results: The proposed HDCM framework successfully inferred the PK model parameters
as well as the random effects and ANN weights while quantifying the uncertainty around
them. This was evident from the standard Bayesian model diagnostics, such as the conver-
gence of multiple chains, the effective sample size (ESS), and the Gelman-Rubin statistic
(Rhat). Posterior predictive checks (PPCs) demonstrated the ability of the model predic-
tions to characterize the train PK dataset with an average normalized root mean square
error (NRMSE) of 16.1%. PPCs also indicated that the model could characterize the test
PK dataset, which improved confidence in the model predictions.
Conclusions: The HDCM framework introduced in this work was developed using open-
source tools in Julia. Synthetic PK data were utilized to demonstrate the training of
an ANN to learn the relationships between covariates and PK model parameters. The
proposed approach was integrated with Bayesian inference to quantify the uncertainty
around the model parameters. The convenience of the proposed HDCM framework makes
it readily accessible to an audience interested in applying deep learning to hierarchical
pharmacometric compartment models.

Methods

Figure 1. HDCM workflow. The individual covariates x i are used as inputs to the ANN
that would then output the typical individual parameters θi . IIV (ηi) and residual error
(εi j) parameters are added to the hierarchical compartmental model structure. Model
predictions are compared to the observed data within a Bayesian analysis framework to
infer the posterior distributions of ANN parameters as well as the random effects.

Application

• Synthetic PK data for 30 subjects receiving a single oral dose of a drug. The PK was
assumed to follow a two-compartment model distribution.

• The data was split into training (n = 10) and test (n = 20) datasets.

• The following 4 covariates were tested and used as inputs to the ANN: age, weight,
EGFR, and albumin.

• The output from the ANN θ represented the typical individual values of the PK
parameters: CL, V1, Q, V2, and ka.

• IIV was added to CL such that C Li = θi .e
ηi where ηi ∼ N(0,ω2).

• The compartmental model was built using DifferentialEquations.jl.

ANN structure

• Input layer composed of 4 nodes (4 covariates).

• Hidden layer composed of 6 nodes.

• Output layer composed of 5 nodes (typical PK parameters).

• Activation functions were swish and CELU for the output layer.

• The output layer was initialized at the maximum a posteriori (MAP) Bayes estimate
of the parameters from an initial naive pooled fit.

• Flux.jl and DiffEqFlux.jl were used to build the ANN and integrate with ODE solvers.

Statistical model

Likelihood:

ci j ∼ N(ĉi j ,σ
2)

where ci j = concentration of the drug for individual i at timepoint j and ĉi j = the corre-
sponding prediction.

Prior distributions:

ω∼ hal f − Cauchy(0,0.5)

σ ∼ hal f − Cauchy(0, 0.5)

w∼ N(0,0.75)

where ω and σ represent the standard deviations of IIV and residual error, respectively.
w represents the ANN weights.

Bayesian inference

The No-U-Turn Sampler (NUTS) was used to draw 3 chains of the posterior samples (500
warmup and 500 sampling) with an acceptance ratio of 0.65. Turing.jl was used for
Bayesian inference.

Results
The HDCM framework was successfully applied to train an ANN to characterize the functional relationship between the tested covariates and the typical PK parameters. The approach
was evaluated using standard Bayesian inference diagnostics including trace and density plots showing convergence of all chains to the same distributions for the select parameters
(Figure 2). The posterior estimates for the select parameters are shown in Table 1 with the Markoc chain Monte Carlo (MCMC) diagnostics: the Gelman-Rubin statistic (R̂) showing
values > 1.05 and effective sample size (ESS) showing reasonably large values for ESSbulk and ESStail . Table 2 displays the interpretable posterior predictions for the typical PK
parameter values together with the uncertainty around the estimates. PPCs showed good characterization of the train (Figure 3) and test (Figure 4) data. The latter indicated that
there was no overfitting with HDCM.

Figure 2. Diagnostic plots. Trace and density plots of select parameters: σ =
residual error, w = NN weight, ω = standard deviation for IIV on C L, and η =
individual random effect on C L. Number of samples = 500, number of chains =
3.

Table 1. Parameter table. CI = credible interval, σ = residual error, w = NN
weight, ω = standard deviation for IIV on C L, and η = individual random effect
on C L. R̂ = Gelman-Rubin statistic, ESSbulk and ESStail are the effective sample
size at bulk and tail of the distribution, respectively.

Table 2. PK parameter table. SD = standard deviation, CI = credible interval,
CL = central clearance, V1 = central volume, Q = intercompartmental clearance,
V2 = peripheral volume, ka = absorption rate constant.

Figure 3. PPCs for train data. Individual (A) and summary (B) PPCs for train data. Black dots = observed data, red lines = median of predictions, blue bands = 95% CI for the
predictions around distribution statistics, namely, median in (A) and (B), and 5% and 95% of predictions in (B). Dashed lines in (B) are medians through 5% and 95% of predictions.

Figure 4. PPCs for test data. Individual (A) and summary (B) PPCs for test data. Black dots = observed data, red lines = median of predictions, blue bands = 95% CI for the
predictions around distribution statistics, namely, median in (A) and (B), and 5% and 95% of predictions in (B). Dashed lines in (B) are medians through 5% and 95% of predictions.

Conclusion
• This work introduced the HDCM workflow that integrates population PK model-

ing with deep learning to learn the structural relationship between an individual’s
covariates and their PK parameter values.

• Bayesian inference was implemented to quantify the uncertainty around the trained
neural network and to infer IIV and residual random effects in the hierarchical
model structure.

• The proposed framework helps avoid overfitting and provides interpretability of
model outputs.

Conclusion
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