Population Pharmacokinetic and Exposure-Response Analysis of Linagliptin in Pediatric Patients with Type 2 Diabetes Mellitus

Brian Reilly^{1,4}, Sonoko Kawakatsu^{1,5}, Kyle T. Baron¹, Shen Cheng¹, Janelle Lennie^{1,6}, Katherine Kay¹, Curtis Johnston¹, Xiaoning Wang¹, Igor Tartakovsky², and Valerie Nock³

¹Metrum Research Group, Tariffville, CT, USA, ²Boehringer Ingelheim Pharma GmbH Co. KG, Ingelheim am Rhein, Germany, ³Boehringer Ingelheim Pharma GmbH Co. KG, Biberach a.d. Riss, Germany, ⁴Vertex Pharmaceuticals Inc., Boston, MA, USA (current), ⁵A2Ai Inc., Ann Arbor, MI, USA (current), ⁶GSK Inc., Philadelphia, PA, USA (current)

Summary

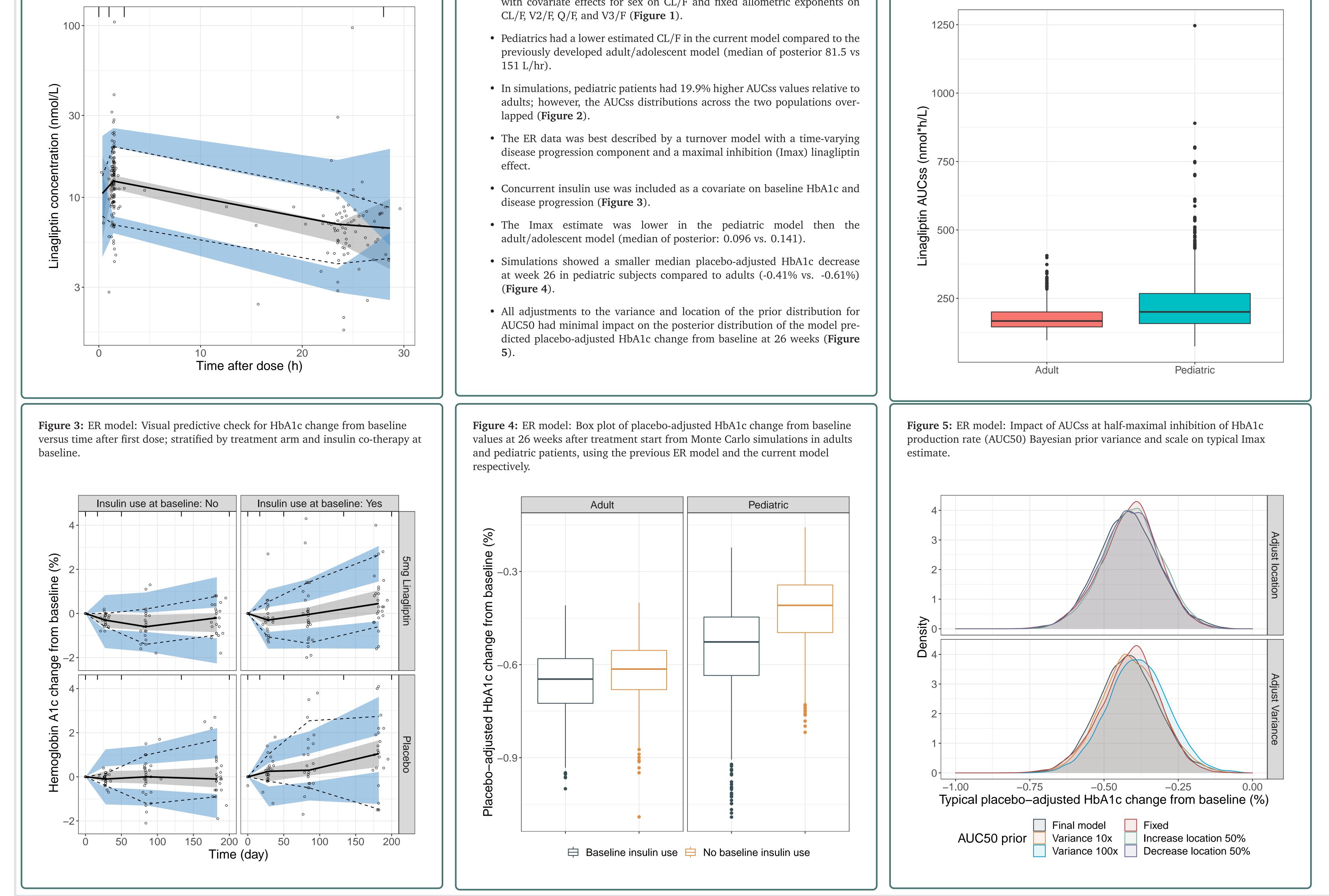
- Linagliptin is a DPP-4 inhibitor approved for the treatment of type 2 diabetes mellitus (T2DM) in adults.
- Study 1218.91 [1] was a trial to evaluate the efficacy and safety of empagliflozin and linagliptin over 26 weeks, with a double-blind active treatment safety extension period up to 52 weeks, in children and adolescents with T2DM.
- Models for linagliptin, previously developed with data from adults and adolescents with T2DM, were re-estimated in a Bayesian framework using only the pediatric data from 1218.91 to characterize pediatric pharmacokinetics (PK) and exposureresponse (ER) and compare to adults. The ER endpoint of interest was HbA1c.
- Slightly larger but more variable linagliptin exposures were achieved for a 5 mg dose in pediatric subjects relative to adults.
- Pediatric patients achieved a smaller, but highly variable, placebo-adjusted HbA1c decrease relative to adults at week 26 (Figure 4).

Demographics

Table 1: PK model: comparison of baseline continuous covariates by study.

Variable	n	Mean	Median	SD	Min / Max
Study 1218.91					
Weight (kg)	63	103	97.2	28.1	43.1 / 171
Age (years)	63	14.4	14.0	1.84	10.0 / 17.0
Estimated GFR (ml/min/1.73m ²)	63	135	125	34.2	87.2 / 283
DPP-4 Activity (RFU)	63	14900	14700	3440	8930 / 25900
Study 1218.56					
Weight (kg)	23	80.6	74.6	23.4	46.6 / 139
Age (years)	23	14.0	14.0	1.89	11.0 / 17.0
Estimated GFR (ml/min/1.73m ²)	23	136	135	33.6	80.1 / 205
DPP-4 Activity (RFU)	23	8890	9860	6140	981 / 19200
Previous Adults					
Weight (kg)	458	90.6	89.0	15.0	57.0 / 132
Age (years)	458	59.1	60.0	9.08	30.0 / 78.0
Estimated GFR (ml/min/1.73m ²)	458	87.5	82.9	22.8	41.8 / 190
DDD 4 A attractor (DELL)	450	10000	10500	2020	1000 / 47500

- The PK model included 227 observations from 63 patients receiving linagliptin 5 mg once daily. The ER model included 389 total observations from 99 patients
- receiving linagliptin (N=48) or placebo (N=51).
- The PK model included informative priors using the point and uncertainty estimates from the previous model fit for all parameters except CL/F and V2/F, which used weakly informative priors during estimation.
- The ER model included an informative prior for the AUC_{ss} producing half-maximal inhibitory effect parameter (AUC50), while all other parameters used uninformative priors.
- Monte Carlo simulations were performed to compare population level endpoints for PK (AUCss) and ER (placebo-adjusted HbA1c change from baseline at 26 weeks) in adult and pediatric patients.
- All analyses performed on the Metworx[™] computing platform using a suite of opensource tools [2].



• The Bayesian estimation approach enabled the characterization of linagliptin PK and ER in a limited sample of pediatric patients, borrowing from what is already known about PK and ER in adults.

458 12800 12500 3920 1080 / 47500 DPP-4 Activity (RFU)

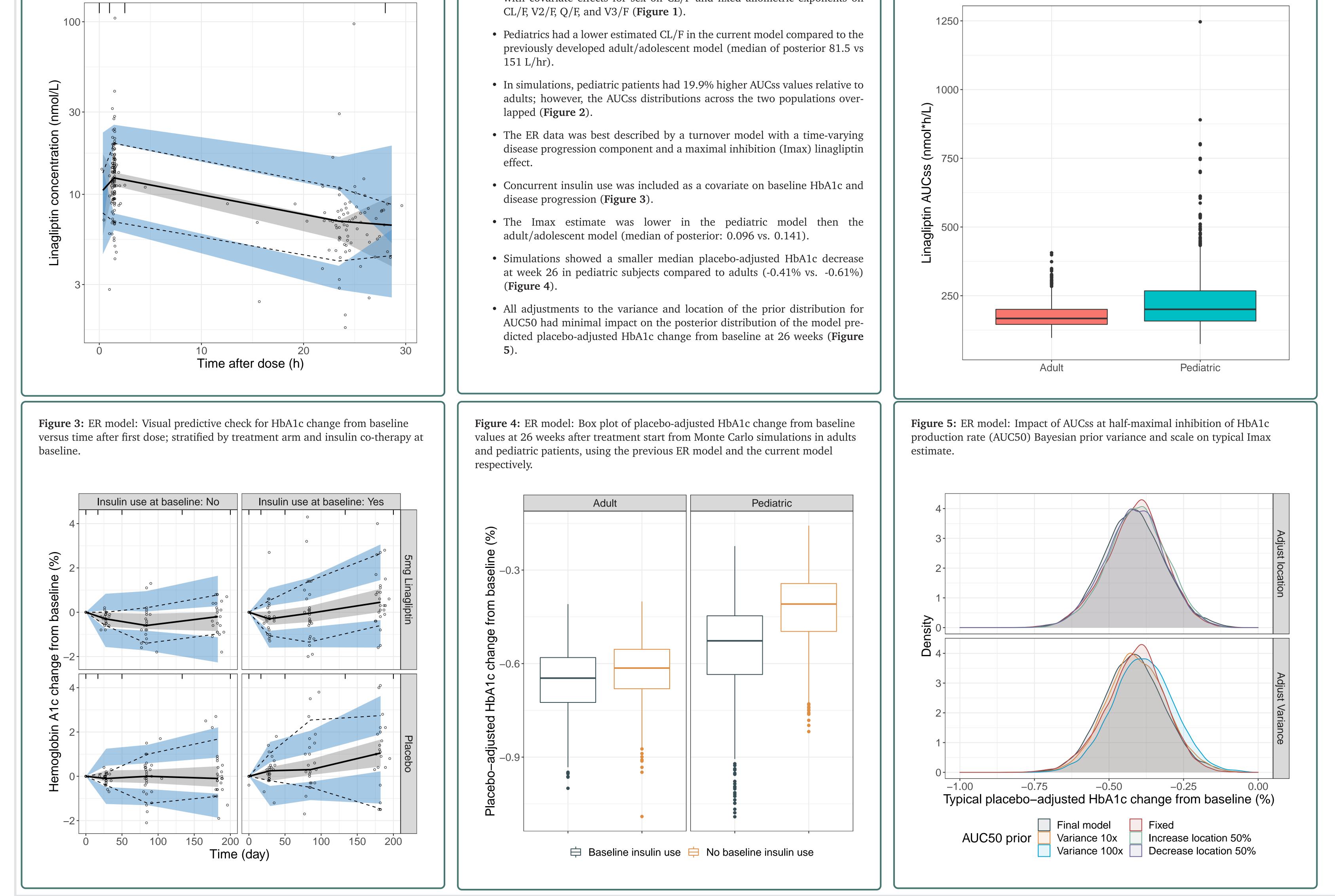

Results

Figure 1: PK model: Visual predictive check for linagliptin concentration versus time after dose.

- The PK data was best described by a two-compartment model with first-order absorption and a saturable binding sub-model in the central compartment with covariate effects for sex on CL/F and fixed allometric exponents on

Figure 2: PK model: Distributions of AUCss values from Monte Carlo simulations in adults and pediatric patients using the previous model and the current model respectively.

References

[1] Laffel, L.M., Danne, T., Klingensmith, G.J., Tamborlane, W.V., Willi, S., Zeitler, P., Neubacher, D., Marquard, J. and DINAMO Study Group. Efficacy and safety of the SGLT2 inhibitor empagliflozin versus placebo and the DPP-4 inhibitor linagliptin versus placebo in young people with type 2 diabetes (DINAMO): a multicentre, randomised, double-blind, parallel group, phase 3 trial. Lancet Diabetes Endocrinol 11 (2023):169–181.

[2] Try Our Suite of Open-Source Tools. https://metrumrg.com/try-open-source-tools/. Accessed: 2022-9-27.

QR code

Presented at the American Conference on Pharmacometrics; 5 November - 8 November 2023

Copies available at: www.metrumrg.com/all-publications

© Metrum Research Group 2023