

Open-Science Immuno-Oncology QSP Modeling Using
 Open-Source Julia Solvers

July 28, 2023

Eric Jordie, Ahmed Elmokadem*, Katharina Wilkins, Tim Knab, Yuezhe Li, Kiersten Utsey, Jimena Davis, Ellen Swanson

- We are a group of quantitative scientists assisting small biotech through large pharmaceutical companies to develop medicines
- We generate mathematical and statistical models to integrate preclinical and clinical knowledge to describe disease progression and inform drug development questions
- We are dedicated to fostering and contributing to open science and coding initiatives as a way to accelerate progress

Why did MetrumRG select Julia as their primary systems pharmacology production platform?

- Needed a fast, scalable, and reproducible open source platform capable of handling large (1000+ equations), multi-scale, spatial, and agent-based, and Bayesian models
- Needed a platform that

Example Immuno QSP Model:. Jafarnejad, 2019
 integrates with other open source platforms (such as R)

NETRUM

RESEARCH GROUP

MetrumRG has already published Open-Source Julia Production Codes for Monoclonal Antibody PBPK

a metrumresearchgroup/bioPBPK Public

<> Code
\odot Issues 1
8\% Pull requests
(1) Actions
田 Projects
\square Wiki
(1) Security
\lfloor Insights

Today's topic: Key AntibodyDrug Conjugate properties and
mechanisms for QSP modeling
(a) The antibody, linker, and warhead components of ADCs each have different design properties that must be considered during modeling. Another key characteristic is the drug-to-antibody ratio (DAR), which typically varies between one and eight.
(b) Key mechanisms of action of the ADC include binding to the target antigen, internalization into the cell, trafficking and recycling of the ADC, endosomal cleavage of the linker or lysosomal degradation of the ADC for warhead release, influx and efflux of the warhead, and cell killing effects at the site of action.

ADC, antibody-drug conjugate; QSP, quantitative

(b)

Warhead Release systems pharmacology.

Motivating Example: in vitro ADC Modeling using Julia

- Drug development typically progresses from in vitro studies, to in vivo animal studies, and ultimately human clinical studies
- For today, we will look at the fundamental principles of the ADC in vitro system, data, and modeling abstracted from the following paper:
THE JOURNAL OF PHARMACOLOGY

Research Article Metabolism, Transport, and Pharmacogenomics
Evolution of the Systems PK-PD Model for Antibody-drug Conjugates (ADC) to Characterize Tumor Heterogeneity and In Vivo Bystander Effect

Aman P Singh, Gail M Seigel, Leiming Guo, Ashwni Verma, Gloria Gao-Li Wong, Hsuan-Ping Chang, and Dhaval K Shah Journal of Pharmacology and Experimental Therapeutics April 9, 2020, jpet.119.262287; DOI: https://doi.org/10.1124/jpet.119.262287

What Julia ecosystem does MetrumRG typically use?

using DifferentialEquations
using ModelingToolkit
using DataFrames, DataFramesMeta, CSV
using Plots, Makie
using ComponentArrays
using Optimization, Turing

Solver Algorithms , ODE Solvers
OEdit on GitHub
ODE Solvers
DifferentialEquations.jl
solve (prob: : ODEProblem, alg; kwargs)
Solves the ODE defined by prob using the algorithm alg. If no algorithm is given, a default algorithm will be chosen.

metworx

High Performance Cloud Computation Made Simple
2. Visual Studio Code Docs Updates Blo

Code editing. Redefined.

Free. Built on open source. Runs everywhere.

Additional resources:

Repository with PBPK modeling example:

- https://github.com/metrumresearchgroup/cptpsp-tutorial-2019
bamlanivimab PBPK paper (Chigutsa et al. Vol 111(3) 2022, p. 595-604):
- https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt. 2459
- https://github.com/metrumresearchgroup/bioPBPK

Motivating Example: Draw it, Develop it, Deploy it

A schematic diagram of a systems pharmacokinetic model developed to characterize T-vc-MMAE PK in a heterogeneous tumor containing N87 and GFP-MCF7 cells

Figure 3 of Singh, A. P., Seigel, G. M., Guo, L., Verma, A., Wong, G. G.-L., Cheng, H.-P., \& Shah, D. K. (2020). Evolution of the Systems Pharmacokinetics-Pharmacodynamics Model for Antibody-Drug Conjugates to Characterize Tumor Heterogeneity and In Vivo Bystander Effect. The Journal of Pharmacology and Experimental Therapeutics, 374(1), 184-199.
https://ipet.aspetjournals.org/content/early/2020/04/ 09/ipet.119.262287

Simplified Case example: ADC schematic, in vitro only

Understanding the System

- Draw it!

Understanding the data: Target Binding

METRUM

Julia Model Code: Target Binding

function invitroADC (du, u, p, t)
\# Compartment volumes and surface areas
Vm $=p[1] \quad$ \# Media volume
\# Rate constants
Kon $=p[2]$ \# ADC/receptor on rate constant
Kd $=p[3] \quad \#$ ADC/receptor dissociation rate
\# Get Koff from Kd and Kon
Koff $=$ Kd*Kon*6.022e23/1e9 ; \# Convert back to nM
\# ADC in media binding to surface receptor
flux_A_R_s_binding $=A _m / V m * R _s * K o n ;$
\# Surface ADC/receptor unbinding
flux_AR_s_unbinding $=$ AR_s*Koff;
\# ADCs in media
\# Flux $=$ unbinding - binding
du[1] = flux_AR_s_unbinding*Ntot - flux_A_R_s_binding*Ntot;
end

NETRUM

RESEARCH GROUP
Koff = Kd*Kon*6.022e23/1e9 ; \# Convert back to nu
in vitro ADC Modeling

Understanding the data: Lysosomal Degradation

Lysosomal degradation rate (Klys) informed by:

- Lysosomal degradation rate
- Approximated by linker kinetics
in vitro ADC Modeling

Understanding the data: Endosome-to-lysosome

in vitro ADC Modeling

Model Code: Lysosomal degradation

function invitroADC (du, $u, p, t)$
\# Rate constants
Klys $=\mathrm{p}[4] \quad$ \# Lysosomal deg rate const int ADC/receptor
Kend $=p[5]$ \# Endosomal sorting rate for int ADC/receptor
\# Endosomal ADC/receptor complex transport to lysosome
flux_AR_e_to_AR_l = AR_e*Kend;
\# Lysosomal ADC/receptor complex catabolized
flux_AR_l_cat = AR_l*Klys;
\# Endosomal ADC/receptor unbinding
flux_AR_e_unbinding $=A R_{1} e^{* K o f f ; ~}$
\# ADC/receptor complex in endosome
\# Flux = internalization - unbinding - transport to lysosome - recycling du[2] = flux_AR_s_int - flux_AR_e_unbinding - flux_AR_e_to_AR_l - flux_AR_e_recycle;
\# ADC/receptor complex in lysosome
\# Flux $=$ transport from endosome - catabolism
du[3] = flux_AR_e_to_AR_l - flux_AR_l_cat;
in vitro ADC Modeling

Understanding the data: Receptor Expression and Dynamics

Receptor Expression and

 Dynamics informed by:- Receptor expression (immunofluoresence)
- Receptor shedding
- Competition with ligand
- Feedback upregulation/ downregulation
- Effects of receptor dimerization, phosphorylation, signaling
in vitro ADC Modeling

NETRUM

Model Code: Receptor Expression and Dynamics

function invitroADC (du, $u, p, t)$

```
# Calculate Ksyn
Ksyn = Nr * Kdeg;
Krec = p[6] # Rate for receptors recycling to surface
Krec_AR = p[7] # Rate of AR complex recycling to surface
Nr = p[8] # Surface receptor expression (receptors/cell)
Kdeg = p[9] # Surface-bound receptor degradation rate
```

\# Surface receptor synthesis and feedback
flux_R_s_syn $=$ Ksyn;
\# Endosomal receptor recycles to surface
flux_R_e_recycle $=$ R_e*Krec
\# Free receptors on surface
\# Flux $=$ synthesis + unbinding +
\# recycling - binding - degradation
du[4] = flux_R_s_syn + flux_AR_s_unbinding +
flux_R_e_recycle - flux_A_R_s_binding -
flux_R_s_degrade;
end

NETRUM

in vitro ADC Modeling

Understanding the data: Internalization and Recycling

Internalization rate (Kint) informed by:

- Internalization assays, turnover assays

Recycling rates (Krec) informed by:

- receptor-alone and complex recycling rates (CHX)
- turnover assays
in vitro ADC Modeling

NETRUM

Model Code: Internalization and Recycling

function invitroADC (du, $u, p, t)$
in vitro ADC Modeling

end

METRUM

RESEARCH GROUP

Understanding the data: Payload Release and Distribution

Payload release informed by:

- Linker stability
- pH -dependent linker cleavage?
- Protease linker cleavage?
- Intracellular environment?

Payload distribution informed by payload:

- Physchem, protein binding, cellular permeability, diffusivity, etc.
in vitro ADC Modeling

Model Code: Payload Release \& Distribution

function invitroADC (du, u, p, t)

Klys = p[11] \# Lysosomal deg rate constant int ADC/receptor
\# Lysosomal ADC/receptor complex catabolized flux_AR_l_cat $=A R _1 * K l y s ;$
\# Lysosomal antibody catabolized
flux_A_l_cat $=$ A_l*Klys;
\# ADC/receptor complex in lysosome
\# Flux $=$ transport from endosome - catabolism du[6] = flux_AR_e_to_AR_1 - flux_AR_1_cat;
flux_A_1_cat = A_l*Klys;
in vitro ADC Modeling

end

NETRUM

RESEARCH GROUP

Understanding the data: Cell Killing

Cell killing effect (Kkill) depends on mechanism of action, but generally informed by:

- Payload Release
- IC50s
- Cell half lives

Cell cycle-dependent payload sensitivity data/information is also considered
in vitro ADC Modeling

Model Code: Cell Killing

function invitroADC (du, $u, p, t)$

Kkill $=\mathrm{p}[12]$ \# Baseline cell killing/death rate
\# Killing effect model
EC50_Payload $=p[13] \quad \#$ Killing due to payload
Emax_Payload $=$ p[14]
EC50_ADCC $=p[15]$ \# Killing due to ADCC
Emax_ADCC $\quad=p[16]$
\# Unconjugated payload in cytoplasm
\# Flux = payload escape from lysosome - diffusion from cytoplasm to media
du[7] = flux_P_l_to_P_c - flux_P_c_to_P_m;
\# Overall cell growth/death
du [8] = Kgrow_eff*Nc_1 - Kkill_eff*Nc_1;
\# Effective kill rate $=$ baseline death rate + payload killing rate + ADCC killing rate
\# ADCC is assumed to be negligible, here.
Kkill_eff = Kkill + Emax_Payload *(P_c/Vc/6.022e23*1e9)/(EC50_Payload + (P_c/Vc/6.022e23*1e9)) Emax_ADCC*RO/(EC50_ADCC + RO) ;
\# Transit compartments (non-growing) for cells in process of being killed
du[9] $=$ Kkill_eff*Nc_1 - Nc_2/tau;
du [10] $=(\mathrm{Nc} 2-\mathrm{Nc} 3$ 3)/tau;
$d u[11]=\left(N c _3-N c _4\right) /$ tau;
. . .
end

METRUM

RESEARCH GROUP

in vitro ADC Modeling

Page 22

payload

Motivating Example: in vitro ADC Modeling using Julia

Once the system is drawn and developed (parameterized), you can deploy it to simulate scenarios of interest to the drug development team

Single Dosing Regimen

> Fractionated Dosing Regimen

-1.25 mpk Q4dX4 -2.5 mpk Q4dXX4
ent/early/2020/04/09/ipet.119.26 $\underline{2287}$
https://ipet.aspetjournals.org/cont
Coming Soon: MetrumRG is currently developing
open source IO library models and presenting
Jullia-based content at ACoP 14 (November 5-8th):

Saturday, November 4, 2023			
Start	End	Event	Vendors
8:00 AM	5:00 PM	Pre-Meeting Workshop (1 day) - Hands-On Tutorial: Introduction to Introduction to Immuno-Oncology (IO) Quantitative Systems Pharmacology (QSP) Modeling Using the Open Source Julia Computing Language	Metrum Research

QSP-754 Ahmed Elmokadem
Timothy Knab, Eric Jordie, Matthew Riggs

An Open Source Package Suite in Julia to Facilitate QSP Modeling and Simulation

Coming Soon:
 Combined, \& parameterized model specs

```
@MRGModel function invitroODE(du, u, p, t)
    @init begin
        # Compartment volumes and surface areas
        @parameter Vm = 5e-4 # Media volume
        @parameter Vc = 3.68e-12 # Volume of single cell
        @parameter Sc = 1.66e-5 # Surface area of a single cell (cm^2)
        @parameter NcO = 1.5e5 # Initial number of cells in well
        # Rate constants
        @parameter Kon = 0.0 # ADC/receptor on rate constant
        @parameter Koff = 1.0 # ADC/receptor off rate constant
        # Initial number of cells in well
        @init Nc_1 = NcO; # All cells are healthy
        @init Nc_2 = 0.0;
        @init Nc_3 = 0.0;
        @init Nc_4 = 0.0;
    end
    @ddt Nc_1 = Kgrow_eff*Nc_1 - Kkill_eff*Nc_1;
    # Transit compartments (non-growing) for cells in process of being killed
    @ddt Nc_2 = Kkill_eff*Nc_1 - Nc_2/tau;
```

Thank you
ahmede@metrumrg.com

