

Immune System Modeling

Open-Science Immuno-Oncology QSP **Modeling Using Open-Source Julia Solvers**

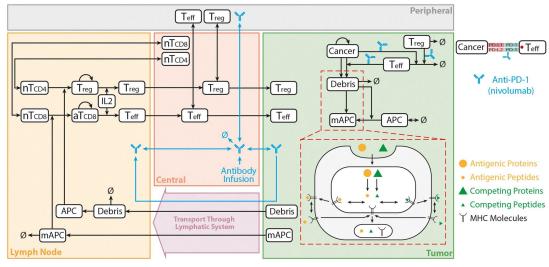
July 28, 2023

Eric Jordie, Ahmed Elmokadem^{*}, Katharina Wilkins, Tim Knab, Yuezhe Li, Kiersten Utsey, Jimena Davis, Ellen Swanson

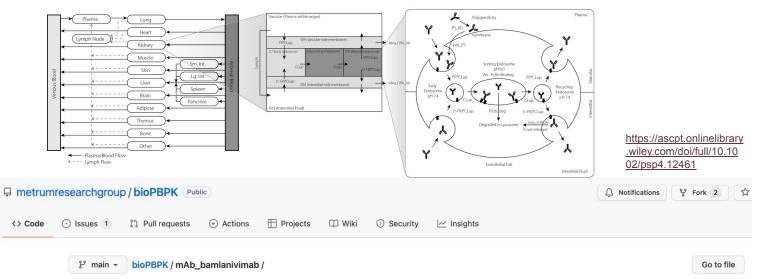
*Presenter

Who are we?

- We are a group of quantitative scientists assisting small biotech through large pharmaceutical companies to develop medicines
- We generate mathematical and statistical models to integrate preclinical and clinical knowledge to describe disease progression and inform drug development questions
- We are dedicated to fostering and contributing to open science and coding initiatives as a way to accelerate progress



- Why did MetrumRG select Julia as their primary systems pharmacology production platform?
 - Needed a fast, scalable, and reproducible open source platform capable of handling large (1000+ equations), multi-scale, spatial, and agent-based, and Bayesian models
 - Needed a platform that integrates with other open source platforms (such as R) 'ETRUM


RESEARCH GROUP

Example Immuno QSP Model:. Jafarnejad, 2019

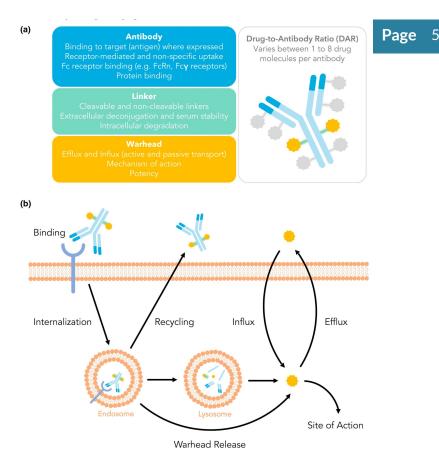
Page 3

MetrumRG has already published Open-Source Julia Production Codes for Monoclonal Antibody PBPK

Description

RESEARCH GROUP

This repository contains the script to reproduce Figures 2 and 3 from the Bamlanivimab manuscript. The mAb PBPK model used is an adaptation of the mAb_Jones2019 model (https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/psp4.12461). The main modification was


MetrumRG is also in the process of developing Open-Source Immuno-Oncology Models

Today's topic: Key Antibody-Drug Conjugate properties and mechanisms for QSP modeling

(a) The antibody, linker, and warhead components of ADCs each have different design properties that must be considered during modeling. Another key characteristic is the drug-to-antibody ratio (DAR), which typically varies between one and eight.

(b) Key mechanisms of action of the ADC include binding to the target antigen, internalization into the cell, trafficking and recycling of the ADC, endosomal cleavage of the linker or lysosomal degradation of the ADC for warhead release, influx and efflux of the warhead, and cell killing effects at the site of action.

ADC, antibody-drug conjugate; QSP, quantitative systems pharmacology.

From: Figure 1 of Lam, I., Pilla Reddy, V., Ball, K., Arends, R. H., & Mac Gabhann, F. (2022). Development of and insights from systems pharmacology models of antibody-drug conjugates. CPT: Pharmacometrics & Systems Pharmacology, 11(8), 967–990. <u>https://doi.org/10.1002/psp4.12833</u>

Motivating Example: *in vitro* ADC Modeling using Julia

- Drug development typically progresses from *in vitro* studies, to *in vivo* animal studies, and ultimately human clinical studies
- For today, we will look at the fundamental principles of the ADC in vitro system, data, and modeling abstracted from the following paper:

ASPET	T A

THE JOURNAL OF PHARMACOLOGY and Experimental Therapeutics

(search		
1			

Home	Articles	Information	Editorial Board	Alerts	Virtual Issues	Feedback	Submit	

Research Article | Metabolism, Transport, and Pharmacogenomics

Evolution of the Systems PK-PD Model for Antibody-drug Conjugates (ADC) to Characterize Tumor Heterogeneity and In Vivo Bystander Effect

Aman P Singh, Gail M Seigel, Leiming Guo, Ashwni Verma, Gloria Gao-Li Wong, Hsuan-Ping Chang, and Dhaval K Shah Journal of Pharmacology and Experimental Therapeutics April 9, 2020, jpet.119.262287; DOI: https://doi.org/10.1124/jpet.119.262287

What Julia ecosystem does MetrumRG typically use?

Page 7

using DifferentialEquations

using ModelingToolkit

using DataFrames, DataFramesMeta, CSV

using Plots, Makie

using ComponentArrays

using Optimization, Turing

SciML: Open Source Software for Scientific Machine Learning

metworx

High Performance Cloud Computation Made Simple

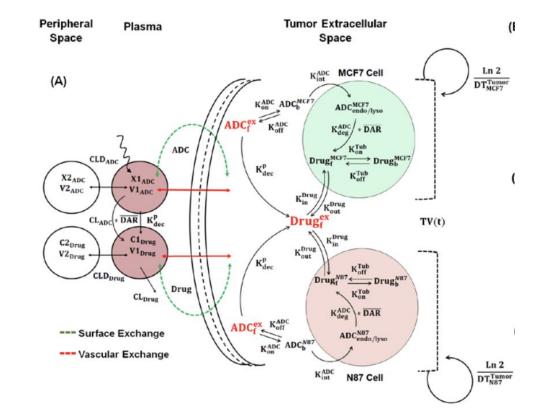
Visual Studio Code Docs Updates Blo Code editing. **Redefined.**

Free. Built on open source. Runs everywhere.

Additional resources:

Repository with PBPK modeling example:

https://github.com/metrumresearchgroup/cptpsp-tutorial-2019

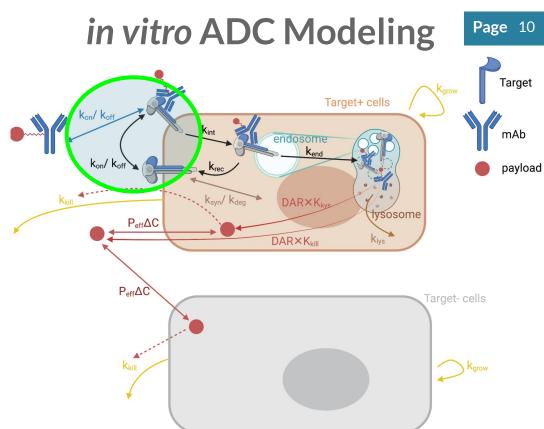

bamlanivimab PBPK paper (Chigutsa et al. Vol 111(3) 2022, p. 595-604):

- https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.2459
- <u>https://github.com/metrumresearchgroup/bioPBPK</u>

Motivating Example: Draw it, Develop it, Deploy it

A schematic diagram of a systems pharmacokinetic model developed to characterize T-vc-MMAE PK in a heterogeneous tumor containing N87 and GFP-MCF7 cells

Figure 3 of Singh, A. P., Seigel, G. M., Guo, L., Verma, A., Wong, G. G.-L., Cheng, H.-P., & Shah, D. K. (2020). Evolution of the Systems Pharmacokinetics-Pharmacodynamics Model for Antibody-Drug Conjugates to Characterize Tumor Heterogeneity and In Vivo Bystander Effect. The Journal of Pharmacology and Experimental Therapeutics, 374(1), 184–199. https://jpet.aspetjournals.org/content/early/2020/04/ 09/jpet.119.262287


Simplified Case example: ADC schematic, in vitro only Page 9 Target Target+ cells kon/ Kof **k**int mAb **Understanding the** endosome k_{end} payload **System** k_{svn}/ k_{dea} DAR×K Draw it! lysosome $P_{eff}\Delta C$ DAR×Kkill **k**lys P_{eff}∆C Target- cells

Understanding the data: Target Binding

Kon/Koff informed by:

- Target affinity assays
 - SPR/Biacore affinity
 - Cell-based binding assay
 - Any considerations about multiple epitopes, avidity, bivalent binding?

Julia Model Code: Target Binding

function invitroADC(du, u, p, t)

Compartment volumes and surface areas

Vm = p[1] # Media volume

Rate constants

. . .

Kon = p[2] # ADC/receptor on rate constant
Kd = p[3] # ADC/receptor dissociation rate

Get Koff from Kd and Kon

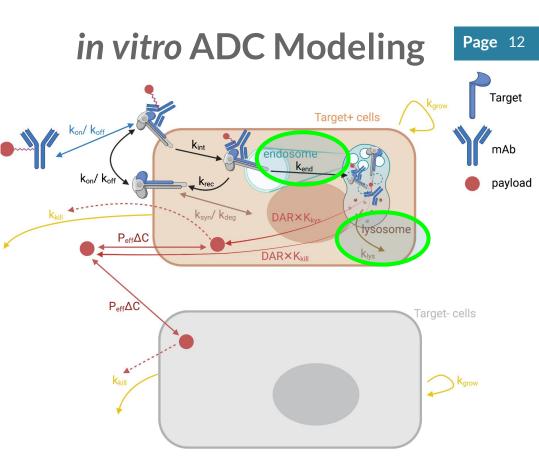
Koff = Kd*Kon*6.022e23/1e9 ; # Convert back to nM

```
# ADC in media binding to surface receptor
flux_A_R_s_binding = A_m/Vm*R_s*Kon;
# Surface ADC/receptor unbinding
flux_AR_s_unbinding = AR_s*Koff;
```

ADCs in media
Flux = unbinding - binding
du[1] = flux AR s unbinding*Ntot - flux A R s binding*Ntot;

...

end


in vitro ADC Modeling Target Target+ cells mAb endosome payload syn/ k_{dea} vsosome P_{eff}∆C DAR×K k_{lvs} Peff∆C

Understanding the data: Lysosomal Degradation

Lysosomal degradation rate (Klys) informed by:

- Lysosomal degradation rate
- Approximated by linker kinetics

Understanding the data: Endosome-to-lysosome

in vitro ADC Modeling Page 13 Target Target+ cells kon/ koff mAb payload k_{svn}/ k_{deg} DAR×K tysosome P_{eff}∆C DAR×Kkill P_{eff}∆0 Target- cells

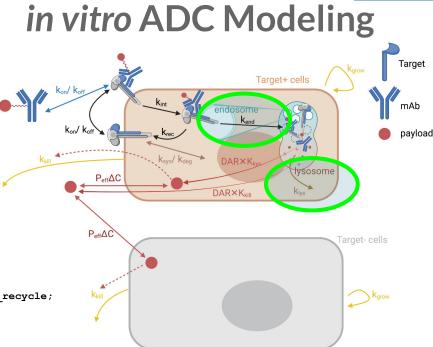
Endosome-to-lysosome/bystander effect informed by combination of:

- Degradation rate in lysosome
- IC50 for payload
- Permeability (Peff)
- Concentration of payload in the media
- DAR

Model Code: Lysosomal degradation

function invitroADC(du, u, p, t)

• • •


Rate constants

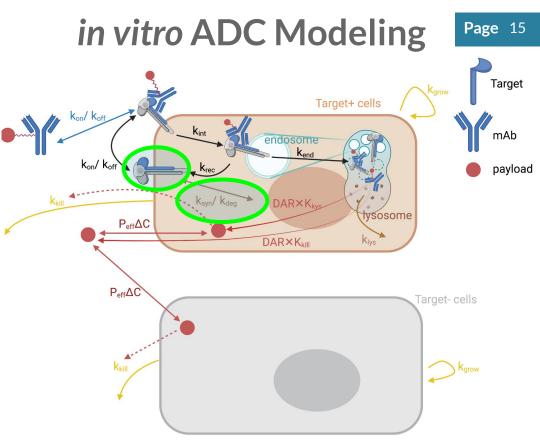
Klys = p[4] # Lysosomal deg rate const int ADC/receptor
Kend = p[5] # Endosomal sorting rate for int ADC/receptor

Endosomal ADC/receptor complex transport to lysosome
flux_AR_e_to_AR_1 = AR_e*Kend;
Lysosomal ADC/receptor complex catabolized
flux_AR_1_cat = AR_1*Klys;
Endosomal ADC/receptor unbinding
flux_AR_e_unbinding = AR_e*Koff;

ADC/receptor complex in endosome
Flux = internalization - unbinding - transport to lysosome - recycling
du[2] = flux_AR_s_int - flux_AR_e_unbinding - flux_AR_e_to_AR_1 - flux_AR_e_recycle;

ADC/receptor complex in lysosome # Flux = transport from endosome - catabolism du[3] = flux_AR_e_to_AR_l - flux_AR_l_cat;

. . .



Page 14

Understanding the data: Receptor Expression and Dynamics

Receptor Expression and Dynamics informed by:

- Receptor expression (immunofluoresence)
- Receptor shedding
- Competition with ligand
- Feedback upregulation/ downregulation
- Effects of receptor dimerization, phosphorylation, signaling

Model Code: Receptor Expression and Dynamics

function invitroADC(du, u, p, t)

Calculate Ksyn

. . .

Ksyn = Nr * Kdeg;

Krec = p[6] # Rate for receptors recycling to surface Krec_AR = p[7] # Rate of AR complex recycling to surface Nr = p[8] # Surface receptor expression (receptors/cell) Kdeg = p[9] # Surface-bound receptor degradation rate

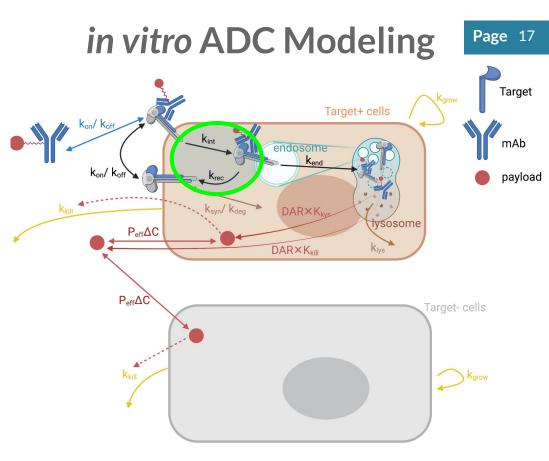
Surface receptor synthesis and feedback
flux_R_s_syn = Ksyn;
Endosomal receptor recycles to surface
flux_R_e_recycle = R_e*Krec;

Free receptors on surface
Flux = synthesis + unbinding +
recycling - binding - degradation
du[4] = flux_R_s_syn + flux_AR_s_unbinding +
 flux_R_e_recycle - flux_AR_s_binding flux_R_s_degrade;

•••

end

in vitro ADC Modeling Target Target+ cells mAb payload lysosome P_{eff}∆C DAR×K k_{lvs} Peff∆C


Understanding the data: Internalization and Recycling

Internalization rate (Kint) informed by:

• Internalization assays, turnover assays

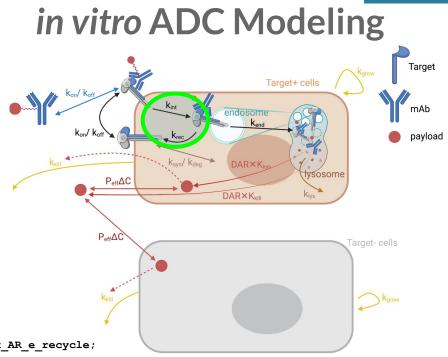
Recycling rates (Krec) informed by:

- receptor-alone and complex recycling rates (CHX)
- turnover assays

Model Code: Internalization and Recycling

function invitroADC(du, u, p, t)

. . .


Kint = p[10] # ADC/receptor complex int rate constant

Receptor occupancies (using baseline receptor abundance)
RO = AR_s/R_s_0;

ADC/receptor complex internalizing to endosome
flux_AR_s_int = AR_s*Kint;

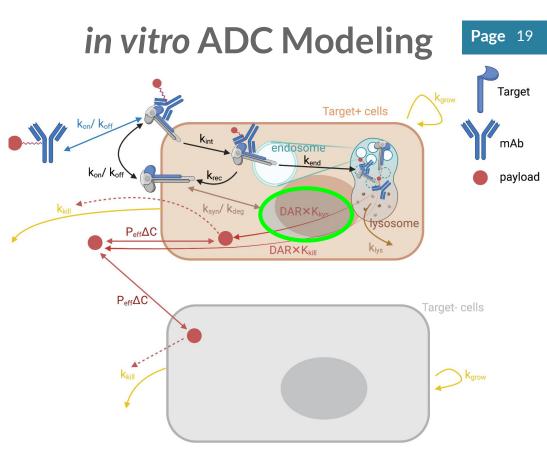
```
# Endosomal ADC/receptor recycles to surface
flux_AR_e_recycle = AR_e*Krec_AR;
```

ADCs bound to cell surface
Flux = binding - unbinding - internalization + recycling
du[5] = flux A R s binding - flux AR s unbinding - flux AR s int + flux AR e recycle;

end

. . .

Page 18


Understanding the data: Payload Release and Distribution

Payload release informed by:

- Linker stability
- pH-dependent linker cleavage?
- Protease linker cleavage?
- Intracellular environment?

Payload distribution informed by payload:

• Physchem, protein binding, cellular permeability, diffusivity, etc.

Model Code: Payload Release & Distribution in vitro ADC Modeling function invitroADC(du, u, p, t) . . . Klys = p[11] # Lysosomal deg rate constant int ADC/receptor Target+ cells # Lysosomal ADC/receptor complex catabolized flux AR l cat = AR l*Klys; P_{eff}∆C DAR×K # Lysosomal antibody catabolized P_{eff}∆C flux A l cat = A l*Klys; # ADC/receptor complex in lysosome # Flux = transport from endosome - catabolism du[6] = flux AR e to AR l - flux AR l cat;

Page 20

Target

mAb

) k_{grov}

vsosome

k_{lvs}

payload

end


. . .

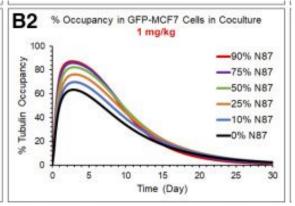
Understanding the data: Cell Killing

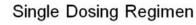
- Cell killing effect (Kkill) depends on mechanism of action, but generally informed by:
 - Payload Release
 - IC50s
 - Cell half lives

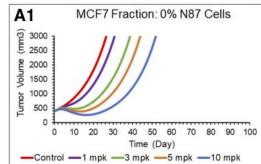
Cell cycle-dependent payload sensitivity data/information is also considered

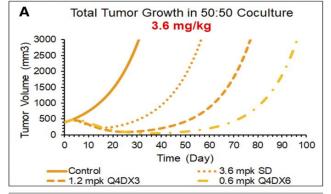
Model Code: Cell Killing

Page 22 function invitroADC(du, u, p, t) in vitro ADC Modeling . . . Kkill = p[12] # Baseline cell killing/death rate # Killing effect model Target EC50 Payload = p[13] # Killing due to payload Target+ cells Emax Payload = p[14]mAb EC50 ADCC = p[15] # Killing due to ADCC kon/ payload Emax ADCC = p[16]# Unconjugated payload in cytoplasm DAR×K # Flux = payload escape from lysosome - diffusion from cytoplasm to media lysosome PeffΔC k_{lvs} du[7] = flux P l to P c - flux P c to P m;DAR×K # Overall cell growth/death du[8] = Kgrow eff*Nc 1 - Kkill eff*Nc 1; Peff∆C # Effective kill rate = baseline death rate + payload killing rate + ADCC killing rate # ADCC is assumed to be negligible, here. Kkill eff = Kkill + Emax Payload *(P c/Vc/6.022e23*1e9)/(EC50 Payload + (P c/Vc/6.022e23*1e9)) Karov Emax ADCC*RO/(EC50 ADCC + RO); # Transit compartments (non-growing) for cells in process of being killed du[9] = Kkill_eff*Nc_1 - Nc_2/tau; du[10] = (Nc 2 - Nc 3)/tau;

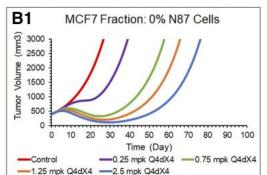

du[11] = (Nc 3 - Nc 4)/tau;


. . .


end



Motivating Example: in vitro ADC Modeling using Julia Once the system is drawn and developed (parameterized), you can deploy it to simulate scenarios of interest to the drug development team



Fractionated Dosing Regimen

https://jpet.aspetjournals.org/cont ent/early/2020/04/09/jpet.119.26 2287

Coming Soon: MetrumRG is currently developing open source IO library models and presenting Julia-based content at ACoP 14 (November 5-8th):

Saturday, November 4, 2023						
Start	End	Event	Vendors			
8:00 AM	5:00 PM	Pre-Meeting Workshop (1 day) - Hands-On Tutorial: Introduction to Introduction to Immuno-Oncology (IO) Quantitative Systems Pharmacology (QSP) Modeling Using the Open Source Julia Computing Language	Metrum Research			

QSP-754 Ahmed Elmokadem Timothy Knab, Eric Jordie, Matthew Riggs An Open Source Package Suite in Julia to Facilitate QSP Modeling and Simulation

Coming Soon: Combined, & parameterized model specs

```
@MRGModel function invitroODE(du, u, p, t)
```

@init begin

. . .

. . .

end

```
# Compartment volumes and surface areas
                              # Media volume
    @parameter Vm = 5e-4
    @parameter Vc = 3.68e-12 # Volume of single cell
    @parameter Sc = 1.66e-5 # Surface area of a single cell (cm^2)
    @parameter Nc0 = 1.5e5  # Initial number of cells in well
    # Rate constants
    @parameter Kon = 0.0 # ADC/receptor on rate constant
    @parameter Koff = 1.0 # ADC/receptor off rate constant
    # Initial number of cells in well
   @init Nc 1 = Nc0; # All cells are healthy
   (init Nc 2 = 0.0;
   (init Nc 3 = 0.0;
   @init Nc 4 = 0.0;
end
@ddt Nc 1 = Kgrow eff*Nc 1 - Kkill eff*Nc 1;
```

Transit compartments (non-growing) for cells in process of being killed

```
@ddt Nc_2 = Kkill_eff*Nc_1 - Nc_2/tau;
```


Page 26

Thank you

ahmede@metrumrg.com

