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Outline

« Why are exposure-response analyses important in oncology?
* Why are exposure-response analyses hard in oncology?

* Potential solutions and limitations
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Why are exposure-response analyses important in oncology?

 Modern cancer treatment has substantial differences in dose-
response compared to cytotoxic therapies.

« Data ignored in MTD paradigm can be quite informative for
dose optimization.

« Optimal dose should also be based on understanding
heterogeneity of patient populations.
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Why are exposure-response analyses hard in oncology?

« Studies are not designed to understand exposure-response
 Late phase studies often limited to one dose/regimen
» Sparse PK sampling

* More patient heterogeneity than other disease area
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Single dose data is a limitation for exposure-response analysis.

Exposure

Covariates
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Solution 1: Improved study design

Ipilimumab monotherapy in patients with pretreated
advanced melanoma: a randomised, double-blind,

multicentre, phase 2, dose-ranging study _ _
Multiple doses were tested in late
phase studies of ipilimumab.

_Phase Ill Study of Adjuvant Ipilimumab (3 or
10 mg/kg) Versus High-Dose Interferon Alfa-2b
“for Resected High-Risk Melanoma: North
American Intergroup E1609
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Both exposure-efficacy and exposure-safety were characterized to inform
dose selection.
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Solution 2: Quantitative analysis methods

Case study 1:

Case study 2:

The Journal of Clinical Pharmacology

The Combination of Exposure-Response S eoslce

©The Author(s) 2012

and Case-Control Analyses in Regulatory DL ilizRce DaoupMERe
Decision Making

Jun Yang, PhD', Hong Zhao, PhD', Christine Garnett, PharmD',

Atiqur Rahman, PhD', Jogarao V. Gobburu, PhD', William Pierce, PharmD?,
Genevieve Schechter, MD?, Jeffery Summers, MD? Patricia Keegan, MD?,
Brian Booth, PhD', and Yaning Wang, PhD'

Cancer Chemother Pharmacol (2017) 80:1079-1090 @ CrossMark
DOI 10.1007/s00280-017-3440-4

ORIGINAL ARTICLE

Exposure-response analyses of trastuzumab emtansine in patients
with HER2-positive advanced breast cancer previously treated
with trastuzumab and a taxane

Chunze Li' - Bei Wang! - Shang-Chiung Chen' - Russell Wada? - Dan Lu! - Xin Wang! - Daniel Polhamus? -
Jonathan French® - Shweta Vadhavkar! - Alexander Strasak? - Melanie Smitt® - Amita Joshi' - Meghna Samant® -
Angelica Quartino' - Jin Jin! - Sandhya Girish!
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Case study 1: Trastuzumab in metastatic gastric cancer
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Case study 1: Trastuzumab in metastatic gastric cancer
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After case-control matching, patients in the Q1

subgroup had similar OS versus FC-treated group
(median survival of 7.7 vs. 7.5 months).
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Case study 1: Trastuzumab in metastatic gastric cancer

Key takeaways:

 “ER analyses based on non-randomized exposure
groups should always be followed by a thorough

check for potential unbalanced distribution of risk
factors across different exposure groups.”

« Such imbalances can be analytically corrected.
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Case study 2: Trastuzumab emtansine in HER2-positive advanced
breast cancer
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Case study 2: trastuzumab emtansine in HER2-positive advanced
breast cancer

B ® Unadjusted
® Cox propottional-hazards modeling
® Case-matching analysis

, « Apparent exposure—response relationship
291 1 was seen between Cmin and the OS and

PFS.

-
n
1

« After adjusting for baseline risk factors,
patients in the Q1 subgroup had similar or
better OS and PFS than the control group.
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Case study 2: Trastuzumab emtansine in HER2-positive advanced
breast cancer

HER2 ECD + TMBD + AST + ALBU +TBL
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It is not possible to consistently and reliably identify patients with low exposure.
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Case study 2: Trastuzumab emtansine in HER2-positive advanced
breast cancer

Key takeaways:

. The inconsistencies in the strength of the apparent exposure—
response relationships for different exposure metrics
suggested a confounding by baseline risk factors.

. The bias that arises from imbalanced comparisons can be
analytically mitigated.
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Summary

» Despite challenges, there are many successful applications of quantitative
modelling in the dosing regimen optimization of oncology drugs

» Improved study design is the most effective solution to these challenges and
something we can influence

* More than one dose/regimen
« Thoughtful PK sampling design

» Addressing these challenges through modeling is less effective but something we

can control
* Propensity-adjusted analyses
* Outcome modeling
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Session Description and Objectives

» The traditional paradigm of oncology drug
development by taking one (maximum
tolerated dose) MTD into late phase
testing put many challenges on evidence
generation. The promise of FDA'’s dose
optimization initiative Project Optimus
offers the hope of a new dawn of Model-
Informed Drug Development (MIDD) in
Oncology. As such, the pharmacometrics
community has been doing and will do
more to determine not only the MTD but
the best therapeutic dose with optimal
benefit-risk. In this webinar, we would like
to provide examples of successful
applications of quantitative modeling in
the dosing regimen optimization of
oncology drugs.

Understanding the need for oncology drug
dose optimization;

Understanding the important guidance
provided by Project Optimus;

Understanding the role of quantitative
modeling in supporting dose optimization in
oncology;

Reviewing case studies involving, the
application of quantitative modelling in
supporting oncology drug development.

@ aa ® American Association of
Pharmaceutical Scientists SLIDE 21



