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Introduction Results .

e Multiple sclerosis (MS) is an autoimmune disease characterized by distinct episodes of acute neurological worsening (relapse) and for- The analysis dataset comprised of 6298 patients, 518 (8.2%) of whom transitioned to SPMS during the study and 228 (3.6%) of whom

mation of brain lesions seen on MRIs. transitioned to SPMS within 2 years. In comparison, the ML model identified a possible trial population of 20% patients who transitioned to
e Individuals progress from a relapsing-remitting (RRMS) state to a secondary progressive (SPMS) state. The vast majority of current treat- SPMS within 2 years, corresponding to a 5.5-fold population enrichment, while maintaining a sensitivity of 15%. EDSS score and the Pyramidal

ments target RRMS and have minimal effect against SPMS [1]. subscore were important features as assessed by Shapley values. Trial simulations showed that without patient population enrichment, trials in
e Therapeutics targeting SPMS and transitions to SPMS is an emerging clinical area of interest, but there is currently limited modeling and similar populations would require large trial sizes and large treatment effects to have power greater than 0.8.

simulation to support decision making. Furthermore, SPMS is often diagnosed retrospectively, and there is ongoing research into identifying

SPMS in a without relying on a multi-year clinical history [2].
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A Rshiny application was built for stakeholders of broad background, enabling real-time trial design and population enrichment simulations.

— An EDSS (Expanded Disability Status Scale) score of 4 or more is a key part of the Lorscheider definition

— No relapses is also a clinically important marker of SPMS
» The objective of this analysis was to identify patients likely to transition to SPMS, as defined by Lorscheider [ 2] based on baseline patient Number of EDSS
characteristics using both a machine learning (ML) classifier and a statistical survival model. Number of patients Percent with observations after
e The models were used to simulate clinical trial power based on varying inclusion/exclusion criteria to improve trial design for potential Parent Study Identifier N progressing to SPMS Time in Study (years) duration > 2 years baseline
SPMS trials. 105MS301 1512 50 3.07 (1.39) 72.4% 13.4 (5.09)
109MS301 1217 78 5.04 (3.74) 63.6% 16.5 (9.65)
Methods oz a0 & s @ew  so
A gradient-boosted tree machine learning model (xgboost) and a parametric accelerated failure time (AFT) survival model were fit to data from C-1801 939 106 7.31 (4.09) 23.1% 23.5(9.79)
five studies and their long-term extensions to predict SPMS transitions, and then used to simulate the time-to-SPMS transition. Covariates were C-1802 1196 97 4.29 (3.00) 86.7% 16.5 (7.68)
selected based upon clinical intuition and Shapley values (metric of covariate importance) from the machine learning model. Clinical trials
were simulated using both models with specified inclusion/exclusion criteria. The impact of study enrichment through these inclusion/exclusion
criteria was explored by comparing sample sizes for fixed levels of power and type 1 error. —
Gradient Boosted Trees Parent Study Identifier
105MS301  109MS301  109MS302 C-1801 C-1802 Summary
e Gradient boosted trees build trees sequentially, each partially correcting the errors of the previous trees n=1512 n=1234 n = 1417 n =939 n=1196 n = 6298
e Predictions are the mean of all the trees Transitioned to SPMS
e Unlike random forests, only tens of tree.s are t.y?1call.y c01olstructed, but not in parallel (nf)r are the trees all IID) N 1462 (96.7) 1156 (93.7) 1330 (93.9) 833 (88.7) 1099 (91.9) 5880 (93.4)
e Tree-based methods do not suffer from instability with highly correlated features (covariates)
e Simple survival models are available in the xgboost package Y >0 (3.3) 78 (6.3) 87 (6.1) 106 (11.3) °7 8.1 418 (6.6)
Transitioned to SPMS within 24 months
Key Machine Learning Concepts and Workflow N 1477 (97.7) 1181 (95.7) 1374 (97.0) 896 (95.4) 1142 (95.5) 6070 (96.4)
e Class imbalance: Most patients did not progress to SPMS, through Shapley values, and informed understanding of par- Y 35 (2.3) 53 (4.3) 43 (3.0) 43 (4.6) 54 (4.5) 228 (3.6)
so the weight of each observation with a transition to SPMS ticular covariate ranges which had particularly large effects Sex
in the loss functio.n (objective function) was queighted to [4]. ShaPley values assess the importance f)f each feature for F 1071 (70.8) 908 (73.6) 993 (70.1) 657 (70.0) 875 (73.2) 4504 (71.5)
make the total weights of each class equal. This ensured the each patient by comparing the effect of using the actual fea- M 1(20.9 396 (26 94 (2 082 (30.0) 321 (26.8) 1 085
model focused on accuracy patients transitioning to SPMS. ture value compared to the mean feature value for different 441 (29.2) (26.4) 424 (29.9) (30.0) (26.8) 794 (28.5)
del . o . sets of features. For tree methods and linear models, exact Smoking history
ML Mode! Hyperparameter tuning: Cross-vaudation using Shapley values can be computed efficiently. Never Smoked 1508 (99.7) 1231 (99.8) 1412 (99.6) 930 (99.0) 1163 (97.2) 6244 (99.1)
a grid (max-entropy) was used to optimize hyperparame- .
ters, which was important to control overfitting in the final Fi . Current Smoking 3(0.2) 3(0.2) 5 (0.4) 7 (0.7) 24 (2.0) 42 (0.7)
igure 1: Precision-recall curve
boosted tree. Default values performed much worse than op- Past Smoking 1(0.1) 0 (0.0) 0 (0.0) 2 (0.2) 8 (0.7) 11 (0.2)
timized values. NA 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1(0.1) 1 (0.0)
e Precision-recall AUC: When evaluating the model, the com-

monly used ROC (sensitivity vs. specificity) curve was likely 0751
misleading because of the class imbalance, and because pre-
dicting patients who transitioned to SPMS was much more
important than identifying the patients who did not transi-
tion. The precision-recall (sensitivity) curve focuses on pre-
diction of the class of interest.

Figure 4: Observed rates of transition to SPMS from RRMS by baseline
0,50 EDSS score. Intervals are 95% confidence intervals. There was a substantial
increase in transition rates between a score of 2 and 3, which corresponds to a
1-2-point increase to an EDSS of 4 - a key component of the Lorscheider defini-
tion of SPMS.

Figure 5: Power curves for inclusion criteria based on EDSS, which was one
most predictive features identified. The machine learning model was used to
simulate outcomes. 500 patients per arm were assumed.
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e Causal interpretation (Figure 3): Shapley values and causal
graphs were used to understand treatment effects.
ments which had a greater effect of suppressing relapses were
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associated with greater rates of t?ansmons to SPMS, likely Figure 2: Estimated isotonic regression e 30%
because relapses masked underlying slow transitions, both
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clinically and in the Lorscheider definition. This justified not 041
including treatment as a feature, and in fact suggested we
should not include treatment as a predictor because it could
hide effects of other features.
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* Isotonic regression: Predictions from a model using

weighted observations did not correspond to actual proba-
bilities. Therefore, an isotonic regression where a piecewise
non-decreasing function was estimated to transform model
predictions to probabilities for simulation [3].
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Figure 6: Shapley values for the xgboost model for a binary outcome. EDSS score and the Pyramidal subscore were important features and also part of the
Lorscheider definition [2]. Other quantitative measurements were important, such as the 25-foot walk time and the nine-hole peg test. However, smoking history
nor imagery data were not important features in this population.
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e Shapley values (Figure 6): Feature importance was assessed Raw Predicted Probabilty

Figure 3: Causal inference: treatment association with transitions to SPMS. Causal mediation likely explains the observed relationship; treatment EDSS Score - L aEwTwee O ooiEENEREES
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Conclusion

Shapley Value

* We pooled data from 5 trials and associated long-term extension studies in patients with RRMS for modeling and simulation.

e EDSS and its subscores are the most important factors for predicting progression to SPMS.

* Trends of power and trial successes were similar for time to event model and binary models, although time to event models and analyses
had higher power, reflecting incorporation of additional data into the parametric model compared to the machine learning model.

e This workflow demonstrates a complementary approach for leveraging both ML and parametric models for exploratory and predictive
modeling.

Figure 7: Power curves for TTE simulation with varying inclusion/exclusion criteria strictness and methods; the ML and TTE models both were substan-
tially more powerful than using EDSS score alone. Simulated power from TTE simulations under a = 0.05, using three appoaches to define inclusion/exclusion
criteria. Bars are 95% confidence intervals for Monte Carlo uncertainty. The trial size per arm was fixed at 300 and the treatment effect was 30%.
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— Limited ML survival models are available with the xgboost package, but parametric models allowed for much more rapid development
of more complex survival models

— ML models gave a performance benchmark for parametric models and helped us understand where parametric models could be refined
(e.g. choices of hazard function)

— Using multiple approaches increased confidence in our understanding important features and reliability of predictions

* Many of the ML techniques used in this analysis are applicable to the pharmacometrics community and address challenges when imple- 0.6 A

menting an ML workflow with clinical data, but are not widely discussed in the ML literature or ML tutorials.
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