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Objectives

Stan is a probabilistic programming language and Bayesian inference engine (HMC simulation) [1]. Torsten is a collection
of Stan functions and features to support pharmacometric modeling [2]. It includes an experimental cross-chain warmup
scheme that performs dynamic warmup adaptation by chain communication and aggregation. We extend previous work on
multilevel parallelization [3] by evaluating the efficiency and sampling quality of fittings using a large number parallel chains.

Methods
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Figure 1: Proposed cross-chain warmup algorithm

The following is the proposed algorithm (see [3] for more details):

1. With a fixed window size w, initiate warmup with stepsize adaptation on nchain chains.

2. At the end of a window, aggregate joint posterior probability from all the chains and calculate the corresponding
potential scale reduction coefficients (R̂) and effective sample sizes (ESS) [4]. For example, with default window size
w = 100, when warmup reaches iteration 200, calculate the potential scale reduction coefficients R̂i and ESSi for
i = 1,2, so that R̂1 and ESS1 are based on warmup iteration 1 to 200, and R̂2 and ESS2 are based on warmup
iteration 101 to 200.

3. At the end of window n with predefined target value R̂0 and ESS0, from 1, . . . , n, select j with maximum ESS j and
calculate a new metric using samples from corresponding windows. Determine convergence by checking if R̂ j < R̂0

and ESS j > ESS0. If converges, move to post-warmup sampling, otherwise repeat step 2.

4. After convergence the parallel chains that participate warmup begin post–warmup sampling. There is no cross–chain
communication during sampling.

To evaluate its performance, we apply the algorithm to a hierarchical PKPD model. With a population of 16, the model uses
the one–compartment model to describe each subject’s PK and an effective compartment for PD, so that the clearance Cl j
absorption rate ka j , and volumne of distribution Vj characterizes the PK, and ke j the effective compartment, for subject j.
These parameters formulate a linear ordinary different equation (ODE)

d y
d t
=

−ka j 0 0
ka j −Cl j/Vj 0
0 ke j −ke j

 y
and is solved by Torsten’s pmx_solve_linode function. The drug effect is then linked to the effective compartment through
a sigmoid Emax model, characterized by baseline E0 and efficacy Emax. The population level parameterscCl, bV ,cka,cke,ÔEmax,
andcE0 are all assigned with lognormal priors.
The model is fitted using both standard Stan practice (“standard run”) as well as the proposed parallel algorithm (“parallel
run”). A standard run consists of 4 chains with 1000 warmup iterations and 1000 sampling iterations in each chain. A parallel
run uses a fixed target R̂0 = 1.05 and one of the three target ESS0 = 200,400,600. With each target ESS, we run the
model with 4, 8, 16, and 32 parallel chains, so that each chain is processed by an individual parallel process, therefore
nchain = nproc, where nproc indicates the number of parallel processes.
From each run, we collect time spent on warmup Timewarmup, on sampling Timesampling, and Timetotal=Timewarmup+Timesampling.
We expect cross–chain warmup would reduce Timewarmup, and an increased nchain would increase total ESS (aggregated
from all the chains) in a fixed Timesampling.

Results

The quality of warmup can be examined through ESS of the joint log–posterior density lp_ per time (seconds) in each chain.
As shwon in Fig. 2, in general the sampling efficiency in parallel runs becomes less efficient. On the other hand, sampling
with a large (>4) nchain produces higher total ESS in total (Fig. 3), thus is a strategy one can explore when the goal is to
obtain a given number of effective samples. Note that in the figures we differentiate ESSbulk and ESStail, as suggested in [4].

0.018

0.021

0.024

0.027

4 8 16 32
nchain

E
S

S
bu

lk
(T

im
e s

am
pl

in
g 

x 
n c

ha
in

)

Target ESS

200

400

600

0.035

0.040

0.045

0.050

0.055

4 8 16 32
nchain

E
S

S
ta

il
(T

im
e s

am
pl

in
g 

x 
n c

ha
in

)

Target ESS

200

400

600

Figure 2: ESSbulk (left) and ESStail (right) of lp_ per post–warmup sampling time (second) in each chain. The horizontal dashed line
indicates the standard run baseline.
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Figure 3: ESSbulk (left) and ESStail (right) of lp_ per post–warmup sampling time (second) from all the chains. The horizontal dashed line
indicates the standard run baseline.

The benefit of cross–chain warmup is apparent when we replace Timesampling with Timetotal in the evaluation, since Timewarmup,
a significant proportion of the total time cost, is reduced by the new warmup algorithm. Shown in Fig. 4, now the ESS per
time in each chain becomes either close to standard run (ESSbulk) or significantly improved (ESStail).
To examine the parallel performance we define

Speedup=
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ESS

Timetotal
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Figure 4: ESSbulk (left) and ESStail (right) of lp_ per time (second) from all the chains. The horizontal dashed line indicates the standard
run baseline.

Table 1 and Fig. 5 show that the parallel setup is very performant. Compared to the standard run, the parallel runs ben-
efit from both reduced warmup time during dynamic warmup and the increased total ESS, and they are able to achieve
super–linear efficiency (parallel efficiency > 1).

Table 1: Parallel efficiency based on ESSbulk (left) and ESStail (right) of lp_

target ESS nchain = 4 nchain = 8 nchain = 16 nchain = 32
200 1.22 1.01 1.03 1.04
400 1.11 1.10 0.938 0.979
600 0.843 0.996 0.939 1.00

target ESS nchain = 4 nchain = 8 nchain = 16 nchain = 32
200 1.59 1.07 1.36 1.29
400 1.38 1.24 1.16 1.22
600 1.11 1.18 1.16 1.25
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Figure 5: ESSbulk (left) and ESStail (right) of lp_ speedup.

Conclusions and future work
Using the Cross–chain warmup and an increased number of chains proves to be an efficient strategy to reduce HMC running
cost and improve parallel efficiency. From the benchmark we notice

1. Setting target ESS to 200 is sufficient to achieve comparable sampling performance. In general, an enlarged target
ESS provides limited benefit.

2. The warmup quality for hierarchical PKPD model can suffer from cross–chain warmup when using a large number of
chains, but the performance in terms of total ESS makes up for this loss.

3. Using a large number of parallel chains is an attractive option to achieve a given ESS, as the parallel runs become
highly efficient in general.
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