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Objectives

To characterize pharmacokinetic / pharmacodynamic relationships in the
population of interest, we want to fit a population PK/PD model that has a fairly
conventional structure. However, the response variable is the PASI, which has
the following features:

e By construction, the PASI can only take values in the range 0-72.

e Approx. 10% — 20% of data are exactly at the lower boundary (zero).

e The number of intermediate possible values is large (697 possible values, all of which are
multiples of 0.1 between 0 and 72; some, e.g., 71.9 are not possible).

These features imply that a (conventional) Normal residual likelihood is
unrealistic, such that inferences based on a Normal likelihood will be incorrect,
and simulations from a model with Normal likelihood will go outside of the
allowable range.
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Approaches to modeling constrained responses with
boundary observations

- Approaches assuming Normal likelihood for a transformed dependent

variable and treating boundary values as censored data (Hutmacher et al,
Stat Med, 2010).

- Approaches assuming Multinomial likelihood for the untransformed
dependent variable, with probabilities structured by a link function to achieve

parsimony when there are many possible outcomes (Hu et al, JPKPD,
2011).

- Approaches assuming Beta likelihood for the untransformed dependent
variable (Beta regression, e.g., Samtani et al, JPKPD, 2013), with
conditional means structured by a link function, and treating boundary
values as censored data. This extension for handling boundary values has
not been published, and is elaborated here.
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The beta distribution

The probability density function for a Beta(a,) distribution is:
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where [ is the gamma function, defined as: I'(z) = [5° P—lg—tgj
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Parameterization of beta distribution for regression Page ¢

Page 6

- Beta distribution typically expressed in terms of parameters a and (3, as shown on
previous slide.

- For purposes of regression it is useful to re-parameterize in terms of
p=af(e+B) and T=a+

- Under this parameterization, the mean and variance of the distribution are
expressed as:

EX] = u

Var[X] = pQ = p)
- T+ 1

- To show the correspondence to the usual parameterization, we refer to this as a
Beta(ur, (1 — p)7) distribution.
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Beta regression approach differs only in residuals Page 7

As in the usual (Normal residual) case, we express our model as:
Yii = f(t,0,mi, x;(t)) + €

We do NOT apply any transformations to Yij (the DV)

2 Ve DO apply transformations (or use alternative tricks, e.g. bounded parameter spaces) to
keep f(t,6,n;, x;(t)) between zero and SMAX, just as we might do with a Normal residual

model (this bit is not unique to Beta regression).

The defining difference is in how we model the residuals. We set U = f(t, 9, ni, Xi(t))
and then specify

ej ~ Beta(pur, (1 — p)71)

T is a free parameter (just as o is in the usual Normal residual implementation).
This residual distribution needs to be modified to handle Os and 1s. We get to that later.
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NONMEM implementation, step 1

Find a strategy to keep f(t7 g, n;, X,-(l‘)) In the desired range.

For example, we might have something like:
Use the logit transform to get the baseline in range:

$PK

COBS = THETA(1) + THETA(8)*CGR1 ;; start adding covariate effects

LBAS = COBS + ETA (1)

SMAX = 10 ;; maximum score on constrained scale

A_0(3) = SMAX*EXP(LBAS)/(1+EXP(LBAS)) ;; effect compartment constrained to [0, SMAX]

g Define the differentials to keep post-baseline values in range (need to define

rate constants accordingly; details not shown)

$DES
DADT (3)= KINN*INHD*(1-BEFF) - KOWT*A(3)
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NONMEM implementation, step 2

Define scale parameter for residual distribution. \Where you
would normally do this:

$SIGMA
1.1

Do this instead:

$PK

[
TAU = EXP(THETA (47))
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NONMEM implementation, step 3

Specify residual distribution. Where you would normally do this:

$ERROR
IPRED = A(3)
Y = IPRED + ERR(1)

Do this instead (this uses approximation noted in Samtani et al):

$ERROR
MU = A(3) / SMAX ; assumes modeling done on [0,SMAX] scale

; Approximation of the log(gamma) function
ALPHA=MU*TAU

BETA=(1-MU) *TAU

X1=ALPHA+BETA

X2=ALPHA

X3=BETA

LG1=0.5*(L0G(2%*3.1415)-L0G(X1)) + X1 * (LOG(X1)-1) + (5/4)* X1 *x ( LOG ( 1 + (1/(15%X1
xx2))));

LG2=0.5*x(L0G(2%*3.1415) -L0G(X2)) + X2 *x (LOG(X2)-1) + (5/4)*x X2 x ( LOG ( 1 + (1/(15%xX2
*%x2))));

LG3=0.5*%*(L0G(2%3.1415) -L0G(X3)) + X3 * (LOG(X3)-1) + (5/4)* X3 * ( LOG ( 1 + (1/(15%xX3
*%x2))));

;Log Likelihood of the beta distribution
LOGL = LG1 - LG2 - LG3 + (ALPHA-1)x*LOG(DV/SMAX) + (BETA-1)*L0G(1-DV/SMAX)
'Y = -2 * LOGL




NONMEM implementation, step 4

Where you would normally do this:

$EST MAXEVAL=99999 NOABORT METHOD=1 INTER NOABORT

Do this instead:

$EST MAXEVAL=99999 NOABORT METHOD=1 -2LOGLIK NUMERICAL LAPLACIAN

METRUM

RESEARCH GROUP




NONMEM / R implementation, step 5
Simulation. Not easy to generate Beta random variates in NONMEM, so we do part of

itin R.

Where you would normally do this:

$TABLE NOHEADER NOPRINT NOAPPEND FILE=./1050.tab
TRL STUD| ID TIME IPRED DV

Do this instead (note that ALPHA and BETA vary over time within

individuals):

$TABLE NOHEADER NOPRINT NOAPPEND FILE=./1050.tab
TRL STUD ID TIME ALPHA BETA

And then in R:

simres$IPRED <- SMAX * simres$ALPHA / (simres$ALPHA + simres$BETA)

simres$DV <- SMAX * rbeta(nrow(simres), shapel = simres$ALPHA, shape2 = simres$BETA)
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A class of augmented beta distributions

In general, one may define a 0-1-augmented Beta(a, 3, po, p1) distribution as one with density:

Po x=0
p(x) = pir : x=1
(1 —po—p)fSthx "1 —x)P~" : 0<x<1

In our application, we assume that the same conditions that make low-valued responses (or
high-valued responses, respectively) likely also make zero-valued (or one-valued, respectively)
responses likely. It therefore makes sense for p0 and p1 to be a function of 4 = a/(a + B).

One approach is to let: L .
PPIOach | po = fo() = logit ™' (=70 — 1 - logit(y))

pr = fi(p) = logit ™" (=70 + 71 - logit(s))
Other choices for f, and f, are possible, as long as they force the condition p, + p, < 1.

L technically, we should use Dirac ¢ functions to make p a true density that integrates to one, but our less
accurate notation is probably easier to follow.
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A class of augmented beta distributions (continued) Page 4

Our particular choice of fy and f; has the following reasonable properties]

fo(n) = (1 — )

() 225 1 fi(p) “=5 0
fo(u) “=3 0 fi(p) “=5 1

£,(0.5) = £,(0.5)
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10=10, y1=1

yo=1, y1=1

METRUM

RESEARCH GROUP

Our choice for ) and f, offers
reasonable flexibility as a

function of Y0 and Y1,
ranging from almost a pure
Beta distribution (top left) to
almost a pure binomial
distribution (top right), with a
variety of shapes for
Intermediate possibilities
(bottom left and bottom
right).




NONMEM Implementation, step 2

We follow the same recipe as for basic beta regression, with
modifications to steps 2, 3, and 9.

In step 2, we just need to define the ¥ parameters. They need to be
constrained to be positive.

$PK

[...]

TAU = EXP(THETA(47)) ; (same as before)
GAMMAO EXP (THETA (48) )

GAMMA1 EXP (THETA (49))
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NONMEM Implementation, step 3

The additional components to the likelihood are easy to add:

$ERROR
MU = A(3) / SMAX ; assumes modeling done on [0,SMAX] scale

MULGT = LOG(MU / (1-MU))

POLGT = - GAMMAO - GAMMA1xMULGT
P1LGT = - GAMMAO + GAMMA1xMULGT
PO EXP (POLGT) /(1+EXP (POLGT))

P1 EXP(P1LGT) /(1+EXP(P1LGT))

; Approximation of the log(gamma) function

ALPHA=MUx*TAU

BETA=(1-MU) *TAU

X1=ALPHA+BETA

X2=ALPHA

X3=BETA

LG1=0.5*(L0OG(2%*3.1415) -L0G(X1)) + X1 * (LOG(X1)-1) + (5/4)* X1 = ( LOG ( 1 + (1/(15%X1
*%2)))) ;

LG2=0.5*x(L0G(2%3.1415) -L0G(X2)) + X2 * (LOG(X2)-1) + (5/4)* X2 * ( LOG ( 1 + (1/(15%X2
*%2)))) ;

LG3=0.5*x(L0OG(2%3.1415) -L0G(X3)) + X3 * (LOG(X3)-1) + (5/4)* X3 * ( L0G ( 1 + (1/(15%X3
*%2)))) ;

;Log Likelihood of the O-1-augmented beta distribution
IF(DV.GT.O0.AND.DV.LT.SMAX) LOGL = LOG(1-PO-P1) + LG1 - LG2 - LG3 + (ALPHA-1)=*L0OG(DV/SMAX
) + (BETA-1)*L0OG(1-DV/SMAX)
IF(DV.EQ.0) LOGL = LOG(PO)
IF(DV EQ.SMAX) LOGL = LOG(P1)
= -2 x LOGL
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NONMEM Implementation, step 5

Now we need to additionally output the values for PO and P1

$TABLE NOHEADER NOPRINT NOAPPEND FILE=./1050.tab
TRL STUD ID TIME ALPHA BETA PO P1

And then (in R) :

# IPRED is a weighted average of zero, mean of Beta dist., and SMAX
simres$IPRED <- with(simres, O *x PO + SMAX * ALPHA / (ALPHA + BETA) + SMAX x P1

# To get DV, first simulate class variable
sim50$DV <- apply(sim50([c('PO', 'P1')], 1,
function(p) sample(0:2, 1, prob = c(p[1], p[2], 1-sum(p)))
)
# ... and then replace the “~"2'' category with Beta random variates:
simb0 <- within(simb50, DV[DV==2] <- rbeta(nrow(simb50), shapel = ALPHA, shape2 = BETA) [DV
==2])
# Finally, scale up by SMAX:
sim50$DV <- SMAX * sim50$DV
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