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2PageObjectives

To characterize pharmacokinetic / pharmacodynamic  relationships in the 
population of interest, we want to fit a population  PK/PD model that has a fairly 
conventional structure. However, the  response variable is the PASI, which has 
the following features:
● By construction, the PASI can only take values in the range 0–72.
● Approx. 10% – 20% of data are exactly at the lower boundary (zero).
● The number of intermediate possible values is large (697 possible values, all of which are 

multiples of 0.1 between 0 and 72; some, e.g., 71.9 are not possible).

These features imply that a (conventional) Normal residual likelihood is 
unrealistic, such that inferences based on a Normal likelihood will be incorrect, 
and simulations from a model with Normal likelihood will go outside of the 
allowable range.
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Approaches to modeling constrained responses with  
boundary observations

- Approaches assuming Normal likelihood for a transformed dependent 
variable and treating boundary values as censored data (Hutmacher et al, 
Stat Med, 2010).

- Approaches assuming Multinomial likelihood for the untransformed 
dependent variable, with probabilities structured by a link function to achieve 
parsimony when there are many possible outcomes (Hu et al, JPKPD, 
2011).

- Approaches assuming Beta likelihood for the untransformed dependent 
variable (Beta regression, e.g., Samtani et al, JPKPD, 2013), with 
conditional means structured by a link function, and treating boundary 
values as censored data. This extension for handling boundary values has 
not been published, and is elaborated here.



5PageThe beta distribution
The probability density function for a Beta(ɑ,β) distribution is:

where Γ is the gamma function, defined as: 



6PageParameterization of beta distribution for regression

- Beta distribution typically expressed in terms of parameters ɑ and β, as shown on 
previous slide.

- For purposes of regression it is useful to re-parameterize in terms of 
and 

- Under this parameterization, the mean and variance of the distribution are 
expressed as:

- To show the correspondence to the usual parameterization, we refer to this as a 
     distribution.



7PageBeta regression approach differs only in residuals

· As in the usual (Normal residual) case, we express our model as:

· We do NOT apply any transformations to Υij (the DV)

· We DO apply transformations (or use alternative tricks, e.g. bounded parameter spaces) to 
keep          between zero and SMAX, just as  we might do with a Normal residual
model (this bit is not unique to Beta regression).

· The defining difference is in how we model the residuals. We set 
and then specify

    is a free parameter (just as σ is in the usual Normal residual implementation). 
This residual distribution needs to be modified to handle 0s and 1s. We get to that later.
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8PageNONMEM implementation, step 1

Find a strategy to keep       in the desired range.

For example, we might have something like:
Use the logit transform to get the baseline in range:

Define the differentials to keep post-baseline values in range (need to define 
rate constants accordingly; details not shown)
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9PageNONMEM implementation, step 2

Define scale parameter for residual distribution. Where you 
would normally do this:

Do this instead:



10PageNONMEM implementation, step 3
Specify residual distribution. Where you would normally do this:

Do this instead (this uses approximation noted in Samtani et al):



11PageNONMEM implementation, step 4

Where you would normally do this:

Do this instead:



12PageNONMEM / R implementation, step 5

Simulation. Not easy to generate Beta random variates in NONMEM, so we do part of 
it in R.
Where you would normally do this:

Do this instead (note that ALPHA and BETA vary over time within
individuals):

And then in R:



13PageA class of augmented beta distributions

In general, one may define a 0-1-augmented      distribution as one with density1:

In our application, we assume that the same conditions that make low-valued responses (or 
high-valued responses, respectively) likely also make zero-valued (or one-valued, respectively) 
responses likely. It therefore makes sense for p0 and p1 to be a function of      .  
One approach is to let:

Other choices for f0 and f1 are possible, as long as they force the condition p0 + p1 < 1.

1 technically, we should use Dirac     functions to make p a true density that integrates to one, but our less 
accurate notation is probably easier to follow.
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15PageOur choice for f0 and f1 offers 
reasonable flexibility as a

function of       and      , 
ranging from almost a pure 
Beta distribution (top left) to 
almost a pure binomial 
distribution (top right), with a 
variety of shapes for 
intermediate possibilities 
(bottom left and bottom 
right).



16PageNONMEM Implementation, step 2

We follow the same recipe as for basic beta regression, with 
modifications to steps 2, 3, and 5.

In step 2, we just need to define the    parameters. They need to be 
constrained to be positive.



17PageNONMEM Implementation, step 3
The additional components to the likelihood are easy to add:



18PageNONMEM Implementation, step 5

Now we need to additionally output the values for P0 and P1

And then (in R) :


