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Abstract

The genetic mechanisms of childhood development in its many facets remain largely unde-

ciphered. In the population of healthy infants studied in the Growing Up in Singapore

Towards Healthy Outcomes (GUSTO) program, we have identified a range of dependencies

among the observed phenotypes of fetal and early childhood growth, neurological develop-

ment, and a number of genetic variants. We have quantified these dependencies using our

information theory-based methods. The genetic variants show dependencies with single

phenotypes as well as pleiotropic effects on more than one phenotype and thereby point to

a large number of brain-specific and brain-expressed gene candidates. These dependen-

cies provide a basis for connecting a range of variants with a spectrum of phenotypes (plei-

otropy) as well as with each other. A broad survey of known regulatory expression

characteristics, and other function-related information from the literature for these sets of

candidate genes allowed us to assemble an integrated body of evidence, including a partial

regulatory network, that points towards the biological basis of these general dependencies.

Notable among the implicated loci are RAB11FIP4 (next to NF1), MTMR7 and PLD5, all

highly expressed in the brain; DNMT1 (DNA methyl transferase), highly expressed in the

placenta; and PPP1R12B and DMD (dystrophin), known to be important growth and devel-

opment genes. While we cannot specify and decipher the mechanisms responsible for the

phenotypes in this study, a number of connections for further investigation of fetal and early

childhood growth and neurological development are indicated. These results and this

approach open the door to new explorations of early human development.
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1. Introduction

An estimated 165 million children under 5 years of age sustain stunted growth, and more than

200 million children suffer impaired neurocognitive development in developing countries around

the world [1, 2, 76]. These effects, caused by a variety of factors, lead to their subsequent loss of

health, cognitive skills and productivity. Although many of these factors are potentially prevent-

able, to deal them we need a deeper understanding of the mechanisms governing child develop-

ment. We have focused here on elucidating some of the key biological determinants of growth

and neurocognitive development in healthy children, and their interactions. As part of the pro-

gram for the Healthy Birth, Growth, and Development (HBGDKi) effort of the Bill and Melinda

Gates Foundation, we have examined neurological development, fetal and early childhood growth

data, and the genotypes of infants in the Growing Up in Singapore Towards healthy Outcomes

(GUSTO) study [3, 4]. By analyzing detailed phenotypic, longitudinal developmental data and

genetic data on this population of normal, healthy children using our information theory-based

methods, we have detected multiple complex dependencies among these variables.

While it is common to look for genetic variants that affect single phenotypes (pairwise

genetic effects—one locus, one phenotype, as is done for disease or pathology analysis) the

richness of information in pleiotropic effects (one locus, two or more phenotypes) has been

largely neglected and provides additional information.

Pleiotropy is well-known in humans, with clear effects reported by [5–9] for example, and is, in

fact, rather common. Every known genetic "syndrome" that has been identified with variants in spe-

cific genes (see the OMIM database for very long lists of these "syndromes") represents a pleiotropic

effect. This is true because a "syndrome" is defined as a collection of phenotypes that share influ-

ences from variants in a particular gene. Thus, the genetic cause of a specific syndrome is by its defi-

nition a pleiotropic effect. Realizing that a single genetic variant affecting more than one phenotype

implies a commonality in the effect on more than one mechanistic pathway, those pathways affect-

ing the respective phenotypes, implies that such genetic variants carry a deeper kind of information

than the usual single locus- single phenotype dependencies. This sharing of genetic influences indi-

cates a connection between the mechanistic pathways, which is a strength of our approach.

In the work reported here, we have analyzed both single locus-single phenotype and pleio-

tropic effects.

Pleiotropy, the phenomenon where a genetic region or locus confers risk to more than one

trait1, is widely observed for many diseases and traits [2], especially cancers [3], autoimmune

[4] and psychiatric [10, 11] disorders. It has also been observed in seemingly unrelated traits;

for instance, early-onset androgenetic alopecia and Parkinson’s disease, Crohn’s disease and

Parkinson’s disease [13], and coronary artery disease and tonsillectomy [5–9].

While our methods can analyze any number of interacting variables, we are limited by sam-

ple numbers. We have also looked for possible interactions between the genetic loci identified.

These dependencies point to various biological pathways contributing to growth and neuro-

cognitive development.

In an effort to identify factors contributing to the effects on growth and neurocognitive

development, we reasoned that multiple layers of analysis, beginning with evidence for depen-

dency among phenotypic and genetic variables, followed by a knowledge-based approach

from previous work in the literature, such as known associations of genetic loci with expres-

sion in certain tissues, commonalities in regulatory pathways among associated genes, and

other functional information, could potentially uncover subtle effects that conventional meth-

ods might not detect [10–12]. This effort was enabled by our analysis methods that can reliably

detect three-variable dependency [13–15], described in detail in the Methods section 4.3.

Application of our three-variable dependency method did indeed allow identification of a
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number of candidate genes that exhibit no significant pairwise dependence with a single phe-

notype, and would therefore be missed altogether by common genetic association methods.

These can be characterized as fundamentally pleiotropic loci.

The specific purposes of this overall effort were rather different from most genetic studies.

Rather than searching for a handful of highly significant causal genes (which is typical for a dis-

ease research) we focused on attempting to reveal biological determinants of growth and neuro-

cognitive development in healthy children by finding multiple less significant genetic correlates,

and to elucidate the specific dependencies among neurological development, physical develop-

ment and SNPs of infants in the GUSTO study. We wished to identify candidate genomic

regions, genes and/or regulatory interactors that may be involved in these developmental pro-

cesses. Since synergy of biological effects is common, we sought to identify as many genetic sig-

nals as possible, including some that exhibit relatively low significance by themselves, in order

to collect multiple pieces of evidence that might collectively point to a set of candidate genes or

loci within the genome, and then to biological pathways or networks. The compilation of exten-

sive regulatory and gene expression data on implicated genes allowed us to implicate a number

of developmental processes. Notable were the large number of connections to brain-specific

and brain-related expression and processes known to affect brain phenotypes. While the wide

range of information that is integrated in this analysis suggests several intriguing conclusions,

the outstanding limitation of this study is that, to our knowledge, there is no comparable data

set that can be used for cross validation. Nevertheless, the resulting candidate dependencies

identified by our method are indirectly validated using multiple public databases.

In the Results section, we present the outcomes of a consecutive set of analyses. We exam-

ined dependencies between longitudinal growth parameters of head circumference, and neuro-

logical development scores of two-year olds; next, we looked at the genetic dependencies of

each of these phenotypes separately; and finally, determined the pleiotropic three-way depen-

dencies among phenotypes and specific SNP’s. Significant dependencies were found in each of

these steps, and these sets of genetic variants collectively implicated some of the same processes.

Nomenclature:

• Bayley phenotypes (or simply Bayley) = Bayley scale scores

• Adaptive = composite Adaptive Bayley scale score

• Social-emotional = composite Social-emotional Bayley scale score

• Motor = composite Motor Bayley scale score

• Cognitive = composite Cognitive Bayley scale score

• Language = composite Language Bayley scale score

• Growth phenotypes = growth model parameters linf, lambda, alpha

• Two-way (or pairwise) dependence measure = mutual information

• Three-way dependence measure = Delta3

2. Results

2.1. Relationships between fetal and early childhood growth and

neurological development

To determine if there were effects on neurological development of fetal and early childhood

growth profiles, we looked for dependencies among various data variables that represented
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aspects of these processes. We used our information theory methods, which assume no models

(see Methods Section 4.3) [13–15], to examine dependencies between growth phenotypes and

neurological measurements. Our initial attempts to detect dependencies between the raw

growth measurement data points (head circumference) and neurological measurements (e.g.,

Bayley phenotypes) of infants at two years of age led to relatively poor statistics, probably

caused by characteristics of the growth data including the variable times of growth measure-

ment, the noise in these single point measurements and missing data, particularly in the fetal

growth data sets. To resolve this problem, we fit the growth data of the entire population to a

parameterized Gompertz-like model resulting in a population mean curve and we then esti-

mated individual deviations and used the model parameters estimates for each subject as the

growth phenotype variables to examine for dependency together with the neurological data

(see Methods section 4.2.3 for details and fit statistics). The growth model involves three

parameters that describe the final growth limit, a growth rate parameter and the non-linearity

of growth deceleration. These three growth curve parameters were analyzed for two- and

three-way dependencies with the neurological phenotypes, including Bayley [16], Infant Tod-

dler Social Emotional Assessment (ITSEA) and Child Behavior Check List (CBCL).

The pairwise dependence measures and the three-way dependence measure (see Methods

section 4.3) were calculated for 1073 subjects and permutation tests were performed to gener-

ate p-values (described in Methods section 4.4). We found a number of effects in both the two-

variable and three-variable cases. As shown in Table 1, the strongest effect (lowest p-value) for

two-way dependencies was clearly between the composite Cognitive Bayley phenotype and

any growth parameter. The correlations indicated between phenotypes suggest that there is a

relationship and, hence, the possibility of common causes. Furthermore, such correlations

Table 1. Significant dependencies among neurological phenotypes (Bayley) and growth parameters (Growth)

with 2-way (top sub-table) and 3-way effects (middle and bottom sub-tables) were observed.

Bayley Growth / Bayley Growth P-values

Cognitive alpha 1.76E-05

Adaptive lambda 3.29E-04

Social-emotional alpha 4.7E-04

Language linf alpha 2.7E-04

Social-emotional linf alpha 1.293E-03

Adaptive linf alpha 1.905E-03

Cognitive linf alpha 2.257E-03

Adaptive alpha lambda 2.416E-03

Social-emotional Adaptive linf 2.22E-06

Social-emotional Adaptive lambda 3.97E-06

Language ITSEA linf 5.69E-06

Adaptive CBCL lambda 7.96E-06

Language Social-emotional alpha 8.87E-06

Language Adaptive alpha 1.02E-05

Note that the change in statistical significance after multiple hypothesis correction here is small. The composite

Cognitive Bayley scale score and the growth rate parameter alpha showed the strongest 2-way dependencies, as

measured by the p-value (described in Methods section 4.4.) There was a clear relationship between robust head

growth and the Bayley phenotypes for both 2-way and 3-way dependencies. With the exception of the two shown in

the bottom sub-table, the other child-specific neurological phenotype data such as Infant Toddler Social Emotional

Assessment (ITSEA) and Child Behavior Check List (CBCL) were observed in 3-way dependency with weaker

significance levels (p-values > 10−4) and are not reported here.

https://doi.org/10.1371/journal.pone.0242684.t001
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suggest that stringent corrections for multiple tests may not be appropriate (see Methods sec-

tion 4.4.1). We found later that there were strong pleiotropic genetic effects for the Social-

Emotional composite scale, the Adaptive scale, and the limiting pre-natal head circumference.

A number of other phenotype dependencies were observed, and overall there was a clear rela-

tionship between robust growth and the Bayley phenotypes at age two. In our view it is best to

consider these dependencies not as a collection of pairwise effects, but as a network of interde-

pendencies implicating relationships among growth and Bayley phenotypes. We will address

the network properties further when we consider regulatory effects implicated by our analysis.

These results support the idea that there are significant dependencies between fetal and

early childhood growth and neurological development that should be investigated further and

suggest a strong biological connection between early growth and the development of the brain.

This suggests that in order to explore the biological sources of the dependence, genetic effects

on both of these phenotype classes should be examined.

2.2. Pairwise genetic relationships with neurological and growth variables

To explore the genetic relationships, we first examined the mutual information scores (see

Methods section 4.3) between the 495,719 SNPs (a subset of 557,070 SNPs after preprocessing)

and the five composite Bayley phenotypes for 433 subjects. The details of the acquisition of the

Bayley phenotypes are provided in [16]. The subjects and the SNPs were those without any

missing data values (see Methods section 4.2.4). The pairwise analysis shown in Table 2 reports

permutation-based p-values as described in the Methods section 4.4.1 (only genetic effects

with p-values better than 2.7x10-6 are shown). The collective conclusion derived from the

number and nature of the implicated genes is that there are significant genetic influences on

the neurodevelopmental phenotypes. We flagged these loci for further analysis (Fig 1). The

genetic effects of one of these variants (NELL1) is shown in Fig 8A. The possible confounding

effects of the different ethnicity were calculated as well. While a few SNPs have significant con-

founding effects, most do not. These results and calculations are discussed in Methods section

4.4.2.

Table 2. Significant SNPs associated with Bayley phenotypes using two-way dependency measures (mutual information, MI).

Bayley phenotype SNP Gene MI p-value

Motor rs10833478 NELL1 0.0843 3.409E-07

Motor rs645026 YEATS4 0.0832 4.398E-07

Adaptive rs7387693 MTMR7 0.0847 9.542E-07

Adaptive rs1291359 HTR7P1 0.0829 1.545E-06

Social-Emotional rs11628108 C14orf177 0.0826 1.563E-06

Adaptive rs4955988 CACNA2D3 0.0817 2.134E-06

Motor rs1449848 CPNE8 0.0772 2.156E-06

Motor rs7155811 TMEM260 0.0772 2.165E-06

Social-Emotional rs1161106 LOC100507175 0.0811 2.284E-06

Language rs11658800 ELAC2 0.0803 2.475E-06

Language rs7239403 SMIM21 0.0803 2.514E-06

Social-Emotional rs12434723 C14orf177 0.0805 2.608E-06

Adaptive rs7462219 MTMR7 0.0807 2.667E-06

SNPs are ordered by p-values for the mutual information (see Methods section 4.3). Note that the positions of the SNP’s are indicated for the human genome build

hg19. Note also that rs7239403 is closest to the non-coding RNA gene LINC01898, and SMIM21 is the closest protein-coding gene. The loci at MTMR7 are the only pair

of variants in the same gene. These MI values are not adjusted for ethnicity confounding effects (see section 4.4.2).

https://doi.org/10.1371/journal.pone.0242684.t002
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Although in studies aimed at identifying causative SNPs, as is typical in GWAS, the p-value

cutoff for significant SNPs is typically 5x10-8, driven largely by considerations of multiple

hypothesis testing. The majority of our SNPs fall short of this cutoff and only two are better.

This cutoff, however, has been shown to be very stringent, not taking into account correlations

between variables (which we have in abundance among both SNPs and phenotypes), and is

specifically meant to assure significance for causal SNPs [17–22]. In this paper we argued

against applying this cutoff, or performing other common corrections for multiple hypothesis

testing, since our goal is not to search for causal SNPs, but to detect a set of biologically rele-

vant SNPs that may be statistically weaker on their own, but together can implicate pathways

and processes of growth and neurological development. We therefore decided to use a higher

p-value cutoff to allow for SNPs with weaker signals in this population to be collected for our

downstream knowledge-based analysis. Since Bayley and Growth phenotypes are of different

type (categorical vs numerical), we used two different cutoffs for selecting associated SNPs.

We used 2.7x10-6 as a p-value cutoff for SNPs associated with Bayley phenotypes and 8x10-6 as

a cutoff for growth associated SNPs (see Methods section). Tables 2 and 3 show the corre-

sponding Bayley and Growth associated SNPs. The detailed descriptions of these consider-

ations and methods are found in the Methods section.

Similarly, we examined the mutual information scores between the 448,658 SNPs and the

three growth parameters for 1053 subjects. The subjects and the SNPs were those without any

missing data values (see Methods section 4.2.4). Table 3 shows the pairwise genetic effects with

permutation-based p-values better than 8x10-6.

These loci were associated with the three growth parameters, linf, lambda and alpha, con-

sidered as phenotypes (Table 3, Fig 2). Two loci showed notably strong effects (rs12734338

near PPP1R12B gene, rs6672510 near PLD5 gene). The former is a protein phosphatase sub-

unit, which is implicated as the most significant celiac disease risk locus outside of the HLA

region. This intronic SNP, rs12734338, was reported specifically for the Celiac risk effect [23].

The SNP rs9691259, with the highest score for alpha dependence, is notable since it is located

near genes IGFBP3 and IGFBP1. Gene IGFBP3 produces insulin-like growth factor binding

protein 3 directly involved in growth pathways, affecting growth factor stabilities, and also

released by astrocytes in the brain [24]. Furthermore, rs9691259 is located between the 5’ end

of IGFBP3 and the closest known enhancer (at coordinate 46,515,654 of genome build hg19).

Thus, a regulatory effect is a reasonable conjecture for this genetic association.

Fig 1. Manhattan plot of SNPs with Bayley phenotype dependence. Y axis shows p-values (negative log scale) of pairwise dependence of SNPs with Bayley phenotypes

at 24 months (see Table 2). SNPs with p-value<2.7x10-6 (red line) are highlighted and labeled.

https://doi.org/10.1371/journal.pone.0242684.g001
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2.3. Pleiotropic effects: Genetic locus dependence with pairs of neurological

and growth variables

We used the three-way dependence method to discover pleiotropic genetic variants that were

simultaneously interdependent with two phenotype variables, one each from the neurological

and growth phenotype sets. The genetic variants in these three-way dependencies are not dis-

covered by any pairwise dependence (see Methods section 4.3). For the three-way dependency

calculation, we used 495,719 SNPs (without missing data), five composite Bayley phenotypes

(Adaptive, Cognitive, Social-emotional, Motor and Language), and three growth model phe-

notypes (linf, lambda, and alpha) measured for 428 of 1073 subjects (without any missing val-

ues). This calculation identified 53 SNPs with candidate dependency for both neurological and

growth phenotypes (Table 4, Fig 3). The locus with the most significant dependency is the SNP

in the RAB11FIP4 gene, a highly brain specific gene (p-value of 2x10-8). This locus is associated

with growth phenotype lambda and Bayley phenotype Adaptive (Table 4 and Fig 3) and is con-

tiguous to the NF1 gene (neurofibromatosis), and therefore implicated in growth in the neural

system. This variant is in an intron. The next most significant locus is within the DNMT1 gene

(DNA methyl transferase 1, with a p-value of 6.5x10-8). This is a synonymous variant in an

exon. Finally, the next locus is intronic to LHFPL2 and near ARSB (p-value 1.1x10-7), both

brain-expressed genes. LHFPL2 has been reported to affect Parkinson’s and Alzheimer’s risk

[25, 26].

Because our three-way analysis uses the symmetric measure Delta3, which is the product of

three factors, the asymmetric Deltas corresponding to each variable (see Methods section 4.3),

it is not possible to determine which variable dependencies dominate. In order to capture

dependencies that have only one or two large factors that might not be seen by the symmetric

Delta3, we also examined each individual factor. These measures are specific for each variable

(Δ1 for growth phenotypes, Δ2 for Bayley phenotypes, and Δ3 for SNPs). For the asymmetric

Delta analysis the same five Bayley phenotypes, three growth model parameters, SNPs, and

Table 3. Significant SNPs associated with each of growth phenotypes (linf, lambda and alpha) using two-way dependency measures (mutual information, MI).

Growth parameter SNP Gene MI p-value

Linf rs12734338 PPP1R12B 0.1130 2.229E-09

Lambda rs6672510 PLD5 0.0316 3.120E-08

Linf rs7071157 PFKFB3 0.0276 4.079E-07

Linf rs6710428 CERS6 0.0264 8.826E-07

Lambda rs4793500 CASC17 0.0259 1.163E-06

Alpha rs9691259 IGFBP3 0.0258 1.299E-06

Linf rs6570627 UTRN 0.0250 2.202E-06

Alpha rs7101173 MIR6072 0.0248 2.543E-06

Linf rs6884117 C5orf22 0.0241 3.858E-06

Lambda rs564266 NTM 0.0241 4.054E-06

Lambda rs7075547 LRRTM3 0.0237 5.153E-06

Lambda rs773024 OSTF1 0.0236 5.530E-06

Linf rs373680 FBXO33 0.0232 6.936E-06

Lambda rs154444 ZNF608 0.0232 7.081E-06

Linf rs7981995 DACH1 0.0232 7.181E-06

Alpha rs10196354 ERBB4 0.0232 7.228E-06

The SNPs are ordered by p-value of the unadjusted mutual information (see Methods section 4.3) and the 16 loci that have p-value better than 8x10-6 are shown. For

convenience the nearest gene to the SNP is indicated, even when there is a significant distance between them. Note that none of these SNPs are in the coding regions.

https://doi.org/10.1371/journal.pone.0242684.t003
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subjects were used. Each asymmetric Delta, Δ1, Δ2, and Δ3 identified 77 SNPs (S1 Table), 106

SNPs (S2 Table), and 117 SNPs (S3 Table), respectively, but with higher p-values. These analy-

ses uncovered only a couple of additional loci (TRANK1, for example) suggesting that most of

the collective dependencies detected by the symmetric delta are relatively balanced in their

phenotype pleiotropies.

2.4. X and Y SNPs

If analyzed together with other SNPs, the X and Y SNPs overwhelm the statistical signal due to

the genotype patterns distinguished by sex. As a result, the dependencies for the X and Y chro-

mosomes were assessed separately and the subjects separated by sex. The results for all combi-

nations of phenotypes and gender are listed in Table 5. The subjects for each analysis, and the

preprocessing for this analysis are shown in S5 Table. The X-linked DMD gene (dystrophin) is

Fig 2. Manhattan plot of SNPs with growth parameter dependence. Y-axis shows p-values (negative log scale) of pairwise dependence of SNPs

with three growth variables: a) linf, b) lambda, and c) alpha. SNPs with p-value<8x10-6 (red line) are highlighted and labeled.

https://doi.org/10.1371/journal.pone.0242684.g002
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Table 4. Statistically significant pleiotropic SNPs dependent with growth phenotypes (linf, lambda and alpha) and Bayley phenotypes using three-way dependency.

Chr DBSNP Nearest Gene Major Minor Bayley Phenotype Growth Phenotype P-Val

17 rs178850 RAB11FIP4 C T Adaptive lambda 2.02E-08

19 rs2228611 DNMT1 C A Adaptive alpha 6.46E-08

5 rs6878810 LHFPL2 T G Social-Emotional alpha 1.13E-07

16 rs9933359 LINC01082 C T Adaptive lambda 2.26E-07

1 rs584297 LOC105373115 A G Adaptive lambda 3.15E-07

1 rs525410 LAMC2 C T Social-Emotional lambda 4.56E-07

1 rs1798246 PRDM16 A G Adaptive alpha 4.68E-07

4 rs5020219 ANKRD17 T C Adaptive lambda 5.97E-07

18 rs2663842 ATP8B1 C A Adaptive alpha 6.62E-07

14 rs12587898 IFI27L1 G T Adaptive lambda 6.70E-07

12 rs4763682 PRB4 A C Adaptive lambda 6.70E-07

6 rs2064317 TULP1 A G Adaptive linf 7.00E-07

15 rs936214 PAK6 C T Language linf 7.54E-07

1 rs12030971 DEPDC1-AS1 A G Language linf 7.91E-07

8 rs11787410 CSMD1 G A Adaptive lambda 8.84E-07

11 rs10769889 LMO1 T G Social-Emotional alpha 8.88E-07

7 rs1123227 LINC01448 G A Social-Emotional alpha 9.56E-07

16 rs4843851 IRF8 A C Adaptive lambda 1.02E-06

9 rs10869192 PIP5K1B G A Adaptive linf 1.04E-06

3 rs1131364 FETUB C A Adaptive lambda 1.07E-06

1 rs4846400 ESRRG T C Adaptive linf 1.16E-06

9 rs4741967 SLC1A1 T C Social-Emotional linf 1.21E-06

22 rs5751491 LINC01639 A G Adaptive lambda 1.32E-06

2 rs2164807 ATOH8 A G Adaptive linf 1.39E-06

12 rs11608306 PRB2 A G Adaptive lambda 1.50E-06

11 rs11224253 JRKL-AS1 C T Language linf 1.51E-06

2 rs4668039 STK39 C T Adaptive lambda 1.53E-06

9 rs9918994 LINC00587 T C Adaptive lambda 1.54E-06

5 rs252242 LHFPL2 A G Social-Emotional alpha 1.54E-06

12 rs987547 PPFIBP1 G T Social-Emotional alpha 1.56E-06

20 rs6123702 CTCFL C T Adaptive alpha 1.60E-06

16 rs2938729 CDH8 G T Language linf 1.61E-06

13 rs11618394 LINC00397 T C Adaptive alpha 1.71E-06

10 rs10824914 FAM21EP T C Adaptive lambda 1.80E-06

8 rs10106310 LINC00534 C A Social-Emotional alpha 1.92E-06

9 rs2150696 TYRP1 T C Language linf 2.01E-06

22 rs4822901 LOC105372981 C T Social-Emotional alpha 2.12E-06

9 rs871981 TYRP1 C A Adaptive linf 2.13E-06

12 rs7976966 RIMBP2 C A Adaptive alpha 2.15E-06

16 rs9933765 LOC101928737 G A Social-Emotional alpha 2.17E-06

9 rs7029138 LINC00587 G T Adaptive lambda 2.19E-06

12 rs7139030 NTN4 A C Social-Emotional alpha 2.27E-06

5 rs770172 FBXL17 C T Social-Emotional linf 2.34E-06

1 rs2643885 SKI A G Adaptive alpha 2.42E-06

12 rs4965006 PUS1 T G Language linf 2.43E-06

16 rs9939461 LOC101928737 T C Social-Emotional alpha 2.60E-06

4 rs2725270 ABCG2 T C Adaptive lambda 2.66E-06

(Continued)
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a notable locus with 2 SNPs implicated by the Delta3 score for females. Note that the dystro-

phin gene has been previously reported to affect brain development [27]. Note that the number

of subjects here was considerably smaller, after separating them by gender and removing sub-

jects with missing data, resulting in a substantial loss of statistical power. With p-values less

than 1.5x10-5 some of these are not very significant, but we include them here as candidates for

potentially important pathways.

The two loci with the lowest p-values lie in the pseudo-autosomal regions Par1 and Par2 (at

the ends of the X chromosome) respectively. The first is a gene of unknown function, however

it is located over 40kbps from the implicated SNP. The second locus, the sprouty gene locus

(SPRY3), implicated in males, is a gene reported to be involved in placental development [28].

Note that the two phenotypes in the dependency with SPRY3 are linf, related to head circum-

ference, and Adaptive, a composite Bayley phenotype. The best 10 SNPs with respect to p-val-

ues in each phenotype category are listed in S4 Table.

2.5. Linkage disequilibrium SNPs

Recall that a large number of the original 933,886 SNPs with high mutual information between

each other were removed to reduce redundancy before conducting the dependency analysis.

To find additional SNPs potentially implicating other candidate genes, we searched for all pos-

sible SNPs in Linkage Disequilibrium (LD) with 82 SNPs previously identified using two-way

and three-way dependency analysis (the SNPs in Tables 2–4). The LD was calculated for the

Table 4. (Continued)

Chr DBSNP Nearest Gene Major Minor Bayley Phenotype Growth Phenotype P-Val

8 rs7822130 TRAPPC9 G A Social-Emotional alpha 2.67E-06

16 rs7200646 LOC146513 A C Adaptive lambda 2.87E-06

18 rs7232905 BOD1L2 G A Adaptive lambda 2.88E-06

5 rs10075788 GPR150 T G Language alpha 2.89E-06

2 rs2374380 LOC388942 C T Language alpha 3.13E-06

3 rs2310229 ACPP T C Adaptive linf 3.16E-06

All 53 loci have a p-value better than 3.2x10-6. These results were obtained based on 428 subjects. The SNPs are ordered by p-values.

https://doi.org/10.1371/journal.pone.0242684.t004

Fig 3. The Manhattan plots show significant SNPs for pleiotropy with growth parameters and Bayley phenotypes. Y-axis shows p-values (negative log scale) of

three-way dependencies of SNPs, Bayley phenotypes, and each of the three Growth parameters: a) linf, b) lambda, and c) alpha. SNPs with p-value<3.2x10-6 (red line)

are highlighted and labeled.

https://doi.org/10.1371/journal.pone.0242684.g003
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same sets of subjects used in the corresponding dependency analyses (for details see Methods

section 4.2.1). Although we identified 17 LD SNPs (section of S7 Table), they provided no new

information about other potential genes that might affect the phenotypes (they were either

within the same gene intron/exon or in the same intergenic region). Hence, the disequilib-

rium, while strong in many cases, did not add to our list of potential biological influences.

2.6. Gene interaction

The genetic dependencies reported in the previous sections are pairwise associations or pleio-

tropic effect variants. We expect that there may also be interactions involving multiple variants

that contribute to the overall dependencies. Since the three-way measure can assess two variant

effects on a phenotype, we calculated the interaction between each locus already implicated

above and all other variants. For this calculation, 39 single locus effect SNPs that have been

noted in neurological development or growth (see Tables 8 and 9) were combined with

495,718 other SNPs for each phenotype. The p-values for these measures were calculated using

the same permutation methods as for the single locus effects. This resulted in the detection of

interactions between loci detected in pairwise dependencies and loci not seen with any signifi-

cant other dependence, as presented in Table 6.

There are a number of notable interacting pairs here, for example, the variant at the sphin-

gosine-1-phosphate receptor 2 gene shows significant interaction with DNMT1 and both of

these genes are strongly expressed in the placenta. The locus at HTR7P1 shows interactions

with a diverse range of other loci, on eight different chromosomes. It is clearly an interaction

hub of some kind. The significance of multiple interactions, including the RAB11FIP4 and

PAK6 loci is currently unclear, but intriguing.

2.7. Functional genomic analysis

2.7.1. Variant annotation. To investigate the potential biological interactions implicated

by the genetic dependencies, we integrated the candidate sets of SNPs identified by two-way

and three-way analysis (from Tables 2–4). The list contains 230 unique SNPs after removing 3

SNPs lacking mapping information. We re-annotated the candidate variants based on their

location in the genome using Variant Effect Predictor (VEP, https://www.ensembl.org/vep).

Functional annotation of these 230 SNPs showed that majority were non-coding and located

either in the intergenic or intronic regions of the genome (Fig 4A). There were two neutral

coding SNPs and one missense SNP (rs2064317) located in the coding region of TULP1 gene.

Table 5. Loci on X and/or Y chromosomes with p-values< 1.5x10-5.

Chr Gender DBSNP Nearest Gene Major Minor Bayley Phenotype Growth Phenotype P-Val N

XY Male rs5949162 LOC107985677 G A Social-emotional - 1.92E-07 227

XY Male rs306875 SPRY3 T G Adaptive linf 1.15E-06 223

X Female rs5972504 DMD T C Adaptive alpha 5.64E-06 205

XY Male rs7054955 Intergenic T C Adaptive linf 8.62E-06 223

XY Male rs28562204 DHRSX C A - lambda 1.08E-05 551

X Female rs989011 GLRA2 T C - lambda 1.37E-05 502

X Female rs2445644 DMD G T Adaptive alpha 1.45E-05 205

XY Male rs311043 CD99 T G Language linf 1.46E-05 223

The SNPs are listed according to p-values. Note that this table includes both pairwise and 3-way dependencies, which are indicated by the presence of one or two

phenotypes (indicated in the labeled columns). The numbers of subjects used are different because dependencies were computed separately for males and females, and

the missing values were different in each case.

https://doi.org/10.1371/journal.pone.0242684.t005
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2.7.2. Regulatory functional analysis. The majority of the SNPs identified in GWAS

studies to date are located in the noncoding regions of the genome, and even though they may

have been implicated simply because of their linkage disequilibrium with a causative SNP, they

are equally likely to point to regulatory elements [29, 30]. As most of the SNPs we identified

are also located in non-coding regions of the genome, it is likely that there are some regulatory

effects. To carry out this analysis we used RegulomeDB [31] (http://www.regulomedb.org/).

Of the 230 SNPs, 148 SNPs were scored as having potential regulatory effects (Fig 4B and S6

Table) with two known eQTL SNPs, rs2164807 in the regulatory region of ATOH8 gene, and

rs525410 in the intronic region of LAMC2 gene.

Furthermore, 17 SNPs were scored by RegulomeDB as having strong regulatory functions,

indicated by the top 5 categories, namely 1b, 1f, 2a, 2b, and 3a (see Fig 4B for description).

These SNPs together with their 69 transcription factor (TF) co-regulators (see S8 Table) are

part of a regulatory network governing child’s growth and neurocognitive development. Regu-

latory genetic networks underlying a phenotype arise from regulatory SNPs affecting the tran-

scription factor recognition sequences. To reconstruct a transcription regulatory network, we

connected the SNPs (annotated here by their nearest genes) with common regulatory interac-

tors/TFs as intermediate components, allowing for a connected sub-network (genes without

any connections, were excluded). The network of regulatory interactors (Fig 5) connected 13

key regulators (SNPs in regulatory regions of ATOH8, CTCFL, LINC01639, CD99, PFKB3,

Table 6. Locus interaction effects detected for notable loci exhibiting single locus effects.

SNP 1 Coord 1 SNP 2 Coord 2 Gene 1 Gene 2 P-value

rs2228611 19_10267077 rs10424964 19_10327812 DNMT1 S1PR2 (-) 5.32E-08

rs1131364 3_186370333 exm2249408 10_87772933 FETUB GRID1 (-) 6.22E-07

rs1291359 12_13157267 rs2271025 16_66951783 HTR7P1 CDH16 (-) 4.91E-08

rs1291359 12_13157267 rs9374553 6_115937666 HTR7P1 FRK (-) 1.01E-07

rs1291359 12_13157267 rs10873367 14_86054406 HTR7P1 FLRT2 (+) 1.63E-07

rs1291359 12_13157267 rs11100377 4_162530770 HTR7P1 FSTL5 (-) 1.87E-07

rs1291359 12_13157267 rs7232315 18_55566232 HTR7P1 ATP8B1 (-) 1.90E-07

rs1291359 12_13157267 rs7552143 1_58260994 HTR7P1 DAB1 (-) 2.72E-07

rs1291359 12_13157267 rs220172 21_43556691 HTR7P1 UMODL1 (+) 2.93E-07

rs1291359 12_13157267 rs731957 16_85492882 HTR7P1 GSE1 (+) 2.95E-07

rs1291359 12_13157267 rs472771 1_48556821 HTR7P1 SKINTL (-) 3.52E-07

rs5020219 4_74036166 rs1381014 4_73862030 ANKRD17 COX18 (-) 8.23E-08

rs5020219 4_74036166 rs7666763 4_73858464 ANKRD17 COX18 (-) 8.06E-07

rs525410 1_183176430 rs13374873 1_30280472 LAMC2 LOC101929406 2.18E-07

rs936214 15_40565705 rs11903255 2_167464366 PAK6 SCN7A (-) 1.09E-07

rs936214 15_40565705 rs17025241 3_88053396 PAK6 HTR1F (+) 6.88E-07

rs987547 12_27715010 rs1436125 12_96299676 PPFIBP1 CCDC38 (-) 1.86E-07

rs178850 17_29759235 rs6665385 1_176114487 RAB11FIP4 RFWD2 (COP1) 2.22E-07

rs178850 17_29759235 rs1993451 12_125137009 RAB11FIP4 SCARB1 (-) 2.31E-07

rs178850 17_29759235 rs704834 1_176189141 RAB11FIP4 PAPPA2 (+) 2.34E-07

rs4741967 9_4374278 rs17741020 9_4359689 SLC1A1 SLC1A1 (+) 3.77E-07

rs6123702 20_56055633 rs2075755 19_6422888 CTCFL KHSRP (-) 7.57E-08

rs10869192 9_71280103 rs715521 22_48454426 PIP5K1B LOC284930 (+) 1.19E-07

Gene 1 here indicates a locus that has been noted for several reasons: expression profiles, brain or growth specific known effects, or low p-values in a single locus effect

(see Tables 8 and 9). The coordinates are for genome build hg19. The p-values are calculated for the three-way interaction measure (Delta3 for two SNPs, one of which is

a and the single locus effect SNP).

https://doi.org/10.1371/journal.pone.0242684.t006
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LAMC2, PPEF1, RIMBP2, LOC101928738, CXorf36, PAK6, ASMTL-AS1, DHRSX) with 38

TF interactors. Of the 13 genes with regulatory SNPs in the network (Fig 5), PAK6 seems to be

the central node in the network.

PAK6 identified through our three-way dependence analysis belongs to a group of

p21-stimulated serine/threonine kinases, and is a key regulator of signal transduction path-

ways, cellular division regulation, gene transcription, cytoskeleton rearrangement and apopto-

sis. PAK6 protein expression profile points to highest expression in tissues such as skin,

placenta, testis and cerebral cortex [32] (https://www.proteinatlas.org), while the RNA expres-

sion profile distinctly points to brain tissue specific expression including cerebral cortex and

caudate (https://www.proteinatlas.org, http://gtexportal.org). In a study carried out by Nekra-

sova et al. [33], it was shown that PAK6 is highly expressed in the brain and PAK5/PAK6 dou-

ble knockout mice exhibit several locomotor and behavioral deficits. Nekrasova and colleagues

concluded that normal expression of these two proteins are required for normal level of activ-

ity, and for normal learning and memory, which suggests an important role of PAK6 in neuro-

logical and growth development.

2.7.3. Gene expression profiling. In addition to reconstructing a transcription regulatory

network using RegulomeDB, as shown in Fig 5, we analyzed tissue specific gene expression of

genes and/or eQTLs associated with our integrated set of SNPs, using the Genotype-Tissue

Expression (GTEx) database (http://gtexportal.org). Using GTEx we identified 56 SNPs, out of

which 2 were previously detected by RegulomeDB (S6 Table). Moreover, several of these SNPs

were also shown to have a modest effect on the expression of their associated genes in tissues

such as skeletal muscle, tibial nerve and several brain tissues/regions (see Table 7).

2.7.4. Application of functional mapping and annotation of genome-wide association

studies (FUMA). We combined functional annotation and gene mapping results using

Fig 4. Distribution of functional consequence using VEP annotation tool and RegulomeDB scores for SNPs

linked to neurological and growth phenotypes identified through two-way (mutual information) and three-way

(Delta 3) dependency analysis. a) Distribution of candidate SNPs across the functional locations based on VEP

annotation. Most of the SNPs are located in non-coding locations, i.e., intronic and intergenic regions of the genome.

b) The RegulomeDB score for the candidate SNPs. The lower the score, the more likely it is that a SNP has a regulatory

function. eQTL = expression Quantitative Trait Loci; TF = Transcription Factor.

https://doi.org/10.1371/journal.pone.0242684.g004
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known biological databases to look for additional evidence about the key variants likely to play

a part in neurological and growth development. For this purpose, the integrated set of SNPs

was explored using the software package Functional Mapping and Annotation of Genome-
Wide Association Studies (FUMA) [35–38] (http://fuma.ctglab.nl). FUMA has previously been

used in several GWAS including studies of intelligence [39], neuroticism [40], and Parkinson’s

disease [41].

We selected two particularly interesting lead risk loci, rs178850 and rs6672510, to analyze

using FUMA. The first SNP, rs178850, has the best p-value (2x10-8) of those identified in a

three-way dependency with Adaptive (Bayley phenotype) and lambda (growth phenotype).

Fig 5. Regulatory interaction network. Depicted are interactions of transcription factors connected with regulatory SNPs (noted by their nearest gene).

Clustering and visualization of the network was carried out using Cytoscape v.3.3.0 (undirected network and betweenness centrality statistics). The degree

of nodes (the number of edges per node) is shown with their color, ranging from orange (the highest degree), to yellow, green, and then blue (the lowest

degree). In addition, larger nodes correspond to hubs with higher degree. The edges with high betweenness centrality, whose removal would partition the

network into connected subnetworks, are depicted by thick, orange lines. The small blue nodes are additional factors connected to the dependent loci.

“Orphan genes” (unconnected nodes) are not shown. Nodes with blue, green, and red rings correspond to loci detected with two-way and three-way

analysis (see the legend).

https://doi.org/10.1371/journal.pone.0242684.g005
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This SNP is particularly interesting as it is located in the intronic region of RAB11FIP4 gene

on chromosome 17 and is also very close to NF1 and OMG, which is another brain-specific

gene located within NF1. Thus this SNP could affect three brain genes. See S9 Fig for the

details of the one-SNP three genes structure. All three of these genes are highly expressed in

brain. GTEx data from 53 tissue types shows that RAB11FIP4 has the highest expression in all

13 brain tissues in normal samples, which highlights its potential role in neurological develop-

ment and growth, and its neighbor, NF1, is expressed almost exclusively in the brain and ner-

vous system.

The second interesting SNP, rs6672510, was identified in two-way dependency analysis

with lambda (growth rate parameter phenotype) with a p-value of 3.12x10-8. This SNP is

located in the intronic region of PLD5 gene on chromosome 1. Like in the previous example, it

is also shown to be highly expressed in brain, though its associated phenotype is growth.

FUMA generated circular plots (Fig 6), indicating positions of chromatin interactions and

eQTLs of the two lead SNPs (see Methods section 4.5.5). In the case of RAB11FIP4, 21 genes

were linked to the risk locus, three via eQTL mapping and 18 via chromatin interactions (Fig

6A). In the case of PLD5, 20 genes were linked through chromatin interactions and one

through eQTL mapping (Fig 6B). While not all the genes identified here are relevant to neuro-

logical and growth development, they can serve to identify additional genes and regions that

are not indicated by proximity to the genetic variants and could be used in future experimental

studies. Specifically, four genes (UTP6, CTC-542B22.2, COPRS, RP11-848P1.5) and three

eQTLs (MIR4724, CTD-2349P21.9, RHBDL3) linked to the lead SNP in the RAB11FIP4 gene

have been shown to be highly expressed in several brain tissues (https://gtexportal.org). Simi-

larly, five genes (AL590483.1, ZBTB18, EXO1, CHML, KMO) linked to the lead SNP in PLD5
have been shown to have high expression levels in several regions of the brain. The presence of

chromatin interactors with expression profiles in brain tissues similar to RAB11FIP4 and

PLD5, both of which are highly brain-expressed genes, is therefore highly suggestive of their

roles in a regulatory network of neurological development.

For more information obtained from FUMA and GTEx applied to our candidate set of

genes see S7 Table. The analysis of our set of candidate genes showed differential expression in

frontal cortex, hypothalamus, caudate, nucleus accumbens and putamen, all known for affect-

ing cognitive and motor functions.

2.7.5. Estimated effects of interacting SNPs. Since the visualization of two-variable

dependence with genetic variants is straightforward it is interesting to examine the distribution

of the phenotypes in the population of children. Here we show three diverse examples of

Table 7. Three SNPs identified with tissue specific gene expression of their associated genes and /or eQTLs, using

the Genotype-Tissue Expression (GTEx) database (http://gtexportal.org).

SNP Gene Tissue NES

rs12587898 IFI27L1 Brain cortex 0.41

rs1179161 PNPLA4 Tibial nerve 0.42

“ “ Frontal cortex 0.21

“ “ Putamen 0.25

“ “ Spinal cord 0.36

“ “ Cortex -0.39

“ “ Caudate 0.18

rs645026 YEATS4 Caudate -0.45

The normalized effect size (NES) defined as the slope of the linear regression of the effect of the alternative (minor)

allele relative to the reference (major) allele, based on hg19 reference genome [34].

https://doi.org/10.1371/journal.pone.0242684.t007
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Table 8. Summary of neurological development variants.

Chr rsID Nearest Gene Bayley

Phenotype

Growth

Phenotype

P-Val N Relevant Expression & effects of variants Literature Reference

17 rs178850 RAB11FIP4 Adaptive lambda 2.02E-

08

428 Highly brain specific (7-10-fold higher than

other tissues), affects neurofibroma growth,

next to NF1 and OMG

Bartelt-Kirbach et al.,
2009 [44]

1 rs6672510 PLD5 � lambda 3.12E-

08

1053 High expression in brain, then adrenal and

ovary, previously associated with autism and

multiple sclerosis.

Anney et al., 2010

[45], Baranzini et al.,
2009 [46]

5 rs6878810 LHFPL2 Social-

Emotional

alpha 1.13E-

07

428 Genetic modifier of Parkinson’s age of onset,

new AD susceptibility locus

Hill-Burns et al., 2016

[25], Potkin et al.,
2009 [26]

XY-PAR1 rs5949162 LOC107985677 Social-

emotional

� 1.92E-

07

227

(M)

high expression in brain and endometrium

1 rs584297 LOC105373115, (near

STUM)

Adaptive lambda 3.15E-

07

428 STUM codes for highly brain specific,

mechanosensory protein

Desai et al., 2014 [47]

1 rs525410 LAMC2 Social-

Emotional

lambda 4.56E-

07

428 LAMC1 is just upstream, highly placenta

specific, LAMC2 is near NMNAT2, brain

specific, cognitive traits candidate

Bi, et al., 2017 [48],

Sun et al., 2008 [43]

8 rs7387693 MTMR7 Adaptive � 9.54E-

07

433 Highly brain specific, candidate for

Creutzfeldt-Jacob risk, smoking cessation

Sanchez-Juan et al.,
2012 [49]

12 rs1291359 HTR7P1 Adaptive � 1.55E-

07

433 Serotonin receptor pseudogene, SNP is in

promoter region of HEBP1 (Immune system

related)

8 rs11787410 CSMD1 Adaptive lambda 8.84E-

07

428 High brain and testis expression, linked to

schizophrenia risk

Sakamoto et al., 2016

[50]

11 rs10769889 LMO1 Social-

Emotional

alpha 8.88E-

07

428 Pediatric neuroblastoma susceptibility

candidate, expressed in adrenal, brain and

skin

Oldridge et al., 2015

[51]

3 rs4955988 CACNA2D3 Adaptive � 2.13E-

06

433 highest expression in brain, next in adrenal,

calcium channel subunit, role in regulating

iron uptake

Baeza-Richer, Carlos

et al. (2013) [52]

8 rs7462219 MTMR7 Adaptive � 2.67E-

06

433 Highly brain specific, candidate for

Creutzfeldt-Jacob risk, smoking cessation

Sanchez-Juan et al.,
2012 [49]

XY—

PAR2

rs306875 SPRY3 Adaptive linf 1.15E-

06

223

(M)

Brain expression, Placental expression,

autism candidate

Ning et al., 2015 [53]

9 rs4741967 SLC1A1 Social-

Emotional

linf 1.21E-

06

428 Glutamate transporter implicated in

epilepsy, linked to OCD risk

Afshari et al., 2015

[54], Arnold, et al.,
2006 [55]

22 rs5751491 LINC01639, just

upstream of MPPED1

Adaptive lambda 1.32E-

06

428 Almost exclusively brain expressed, region

linked to schizophrenia risk, bipolar

disorder and brain malignancies

Chen et al., 2010 [56]

17 rs11658800 ELAC2 Language � 2.48E-

06

433 High expression in the brain tissues

16 rs2938729 CDH8 Language linf 1.61E-

06

428 Highly brain-specific

11 rs10833478 NELL1 Motor � 3.41E-

07

433 Brain and kidney specific, interacts with

neural EGFL

Shen et al., 2016 [57]

14 rs7155811 TMEM260 Motor � 2.17E-

06

433 Implicated in pediatric neural development Ta-Shma et al., 2017

[58]

3 rs7611656 TRANK1� Adaptive lambda 3.36E-

06

428 High endometrial expression, bipolar

candidate

Chen et al., 2013 [59],

Ruderfer et al., 2014

[60]

14 rs11628108 C14orf177 Social-

Emotional

� 1.56E-

06

433 Testis expression, linked to late onset

Alzheimer’s

Kunkle et al., 2016

[61]

(Continued)
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results to illustrate the way in which the genetic variants in this cohort affect the phenotypes. It

is clear that the distributions of these quantitative phenotypes are distinctly different. This

effect is seen both for the spectrum of Bayley phenotypes in 24-month infants and in growth

parameters. We illustrate the result for three phenotypes as a function of the variants labeled

by their closest genes NELL1 (composite Bayley phenotype, Motor), PPP1R12B (limit head

size, linf), and PLD5 (growth rate, lambda).

These genotype-specific profiles are interesting in several ways: the NELL1 stratification

suggests that the effect on the Bayley phenotype of the minor allele is recessive to the major

allele. For the PPP1R12B profile, the effect of a single minor allele seems to sharply affect the

head size distribution. The fact that there are no observed homozygous minor genotypes at all

at this position raises the question of whether the shift to smaller head size of the heterozygote

may be highly detrimental in the homozygous state. In the third example of PLD5, the major

allele appears to be partially recessive to the minor allele, which reduces the average growth

rate.

Another, more quantitative, way to compare the distributions for specific SNP genotypes is

to use a Chi-square or Kolmogorov-Smirnov (K-S) test, which provides a useful way to visual-

ize pleiotropic dependencies. To illustrate its use, we show K-S tests for pairwise dependencies

for NELL1, PLD5 and MTMR7 (see Fig 7). Here the K-S score indicates the p-value of testing

the hypothesis that the distributions are the same.

Using the same measure, we can now visualize the pleiotropy by looking at the similarities

and differences between phenotype distributions for different values of the second phenotype,

as shown in Fig 9 for the pleiotropic variant in the PAK6 gene.

Clearly profiles of the growth (linf, the head circumference at birth) phenotype distribution

for subjects with high and average values of Bayley phenotypes (Language score at 24 months)

are similar, but the profile of the growth parameter for low values of Bayley phenotypes is dis-

tinctly different. While it is often difficult to visualize the complex three-variable dependencies

inherent in pleiotropic genetic effects, these measures of similarity seem to provide useful

profiles.

3. Discussion

The finding of significant dependencies among the variables characterizing fetal and early

childhood growth and those characterizing neurological development in the GUSTO project

data led us to explore the genetic dependencies of these variables. The overall goal of this effort

was to gain insight into the underlying biological mechanisms in healthy children and to

implicate processes and pathways involved. In order to mobilize the results of the genetic anal-

ysis of this large data set into possible insights that point to mechanistic pathways and net-

works involved in these critical processes we analyzed and integrated the results in several

ways.

Table 8. (Continued)

Chr rsID Nearest Gene Bayley

Phenotype

Growth

Phenotype

P-Val N Relevant Expression & effects of variants Literature Reference

14 rs12434723 C14orf177 Social-

Emotional

� 2.61E-

06

433 Testis expression, linked to late onset

Alzheimer’s

Kunkle et al., 2016

[61]

Features of a collection of the genes linked to 22 SNPs that we have tied to the neurological traits, having p-values< 5x10-6 and either: high brain levels of expression or

specificity of expression, or published phenotypic effects related to neurological functions in human studies. The notation (M) in the N column indicates that the

dependency was determined for male subjects only. TRANK1, marked with an asterisk, falls just below the p-value threshold so does not appear in Table 4.

https://doi.org/10.1371/journal.pone.0242684.t008
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We used our three-way dependence measure here to identify complex relationships, in this

case pleiotropies, for the first time in human data. Considering that the cohort was not selected

for any traits, and appeared to be normal, healthy children, the results were striking. First, we

Table 9. Summary of some variants linked to fetal and early childhood development.

Chr rsID Nearest Gene Bayley

Phenotype

Growth

Phenotype

P-Val N Relevant Expression & effects of variants Literature Reference

1 rs12734338 PPP1R12B � linf 2.23E-

09

1053 protein phosphatase 1 regulatory subunit,

expression in heart, skeletal muscle, brain

and endometrium, link to celiac disease &

asthma in children

Moorhead et al. 1998 [62], Okamoto

et al. 2006 [63], Freidin and Polonikov,

2013 [64], Östensson et al. 2013 [23],

Montén et al 2015 [65]

1 rs6672510 PLD5 � lambda 3.12E-

08

1053 High expression in brain, adrenal and ovary Anney et al. 2010 [45], Baranzini et al.
2009 [46]

19 rs2228611 DNMT1 Adaptive alpha 6.46E-

08

428 DNA methyl-transferase—Highest

expression in placenta, transcript level

associates with placental weight

Mukhopadhyay et al. 2016 [66], Branco

et al. 2016 [67]

10 rs7071157 PFKFB3 � linf 4.08E-

07

1053 High expression in skeletal muscles,

regulates glycolysis & cyclin-dependent

kinase 1 Links glucose metabolism to cell

proliferation, involved in brain development

(GO:0007420)

Kessler & Eschrich, 2001 [68]

1 rs525410 LAMC2 Social-

Emotional

lambda 4.56E-

07

428 Expressed in several fetal tissues and

placenta

1 rs1798246 PRDM16 Adaptive alpha 4.68E-

07

428 Linked to obesity, heart function and T2D Pérez-Belmonte et al. 2017 [69]

4 rs5020219 ANKRD17 Adaptive lambda 5.97E-

07

428 widespread expression, interacts with

cyclin-dependent kinase 2

14 rs12587898 IFI27L1 Adaptive lambda 6.70E-

07

428 expression high in in testis, adrenal and

ovary, linked to anthropometric traits

(height, weight etc.)

15 rs936214 PAK6 Language linf 7.54E-

07

428 High expression in brain tissues, Kinase

involved in cell proliferation and adhesion,

placental expression

1 rs12030971 DEPDC1-AS1 Language linf 7.91E-

07

428 regulates mitotic progression, placental

expression

Mi et al., 2015 [70]

7 rs1123227 LINC01448 Social-

Emotional

alpha 9.56E-

07

428 Placenta and testis specific expression

7 rs9691259 IGFBP3 � alpha 1.30E-

06

1053 Prolongs half-life of IGFs, high expression in

placenta. Low levels linked to aging and cell

senescence

Hong and Kim, 2018 [71]

3 rs1131364 FETUB Adaptive lambda 1.07E-

06

428 Liver-specific expression, linked to

osteogenesis and bone resorption,

regulation of the insulin and hepatocyte

growth factor receptors

1 rs4846400 ESRRG Adaptive linf 1.16E-

06

428 estrogen-related receptor, regulates

DNMT1, involved in bone formation and

cell growth regulation

2 rs2164807 ATOH8 Adaptive linf 1.39E-

06

428 Transcription factor, highly expressed in fat

cells, linked to muscle regeneration

Güttsches et al., 2015 [72]

12 rs987547 PPFIBP1 Social-

Emotional

alpha 1.56E-

06

428 tyrosine-phosphatase interacting protein,

high expression in heart and placenta

20 rs6123702 CTCFL Adaptive alpha 1.60E-

06

428 ZF transcription factor, insulator factor,

spermatocyte-specific expression

Features of a collection of genes linked to 17 SNPs that we have tied to the neurological traits, having p-values < 1.6x10-6. These had either: expression in the placenta or

endometrium, or published phenotypic functions related to cell growth and selected other functions that could be connected to early development functions in human

studies.

https://doi.org/10.1371/journal.pone.0242684.t009
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found several genetic dependencies of neurological development as indicated by the five differ-

ent Composite Bayley scale scores at two years of age. Second, genetic dependencies of the

fetal and early childhood growth parameters were also identified using parameters fit to

growth data as phenotypes. The set of candidate genes identified using the pairwise measure

(mutual information), with potential functions known to affect growth and brain development

and function, included some intriguing candidates and were encouraging. We then looked for

genetic effects on two phenotypes together, pleiotropic effects, using the three-way measure

from our multivariable dependency method, and found another set of interesting candidates.

Our information-based dependency measures confer the advantage of reduced sensitivity to

undersampling relative to a model fitting approach, so that the number of subjects and the

potential complexity of the dependencies in this work yield results that permutation tests sug-

gest are significant.

Fig 6. FUMA circular plots of chromatin interactions and eQTLs of lead SNPs. a) The plot of chromosome 17, showing the lead SNP, rs178850, of RAB11FIP4 gene

and its interactors. b) The plot of chromosome 1, illustrating the second lead SNP, rs6672510, of PLD5 gene and its interactors. The outer ring (grey dots) shows the

Manhattan plot of all the SNPs in the chromosome, with p< 0.05, and not in LD with the lead SNP. The lead SNPs are indicated with a red dot. Both inner rings

indicate the chromosome, with the risk loci highlighted in blue. The links and labels indicate chromatin interactions (orange) and eQTLs (green). When the SNP is

mapped by both chromatin interactions and eQTLs, as in the case of rs178850, it is highlighted as red.

https://doi.org/10.1371/journal.pone.0242684.g006

Fig 7. The Kolmogorov-Smirnov scores for the genetically stratified phenotype distributions (two shown in Fig

8). The scores, indicating the similarity between the distributions, show the dominance of the major allele for NELL1

and the dominance of the minor allele for PLD5, and MTMR7 (not shown in Fig 8).

https://doi.org/10.1371/journal.pone.0242684.g007
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The largely disjoint sets of SNPs in the three classes (affecting growth parameters, Bayley

phenotypes, and both together) is perhaps surprising, since one might expect that a SNP affect-

ing both neurological development and early growth should have a significant presence for

two-way dependence for each class of phenotypes. As we have discussed in previous work on

multiple dependencies [15], this is not necessarily the case. To further explore this disjoint

effect, we looked at the two-way dependencies for each of the SNPs identified in the three-way

analysis and confirmed that there were no significant two-way dependencies. The initial lists

of results tell the full story. While the interpretation of this observation is unclear, it seems to

indicate that the source of the three-way effects is largely distinct from the two-way effects.

The use of our three-variable dependency measure has been shown to yield a number of

interesting results that could not be detected using only two-way methods [15], which has sig-

nificant implications for the way in which human phenotype data are analyzed. Finding three-

way effects that are distinct from any two-way effects represents a sharp shift of approach and

should be considered in future studies.

Keep in mind here that our insights are based on attempted interpretation of the effects of

SNPs that fall largely in intergenic regions and introns. While this means that we are attempt-

ing to implicate some genes by their proximity to the SNPs, we also have used regulatory data

analysis, and gene expression profiles to attempt to pull pieces of the puzzle together.

The fetal and early childhood growth parameters and the neurological development show a

pattern of dependency on one another, and the genetic effects on both classes of phenotypes

that we see are striking. It is yet unclear what the most important biological pathways involved

in these effects are, but it is intriguing that the patterns are rather consistent in the prevalence

Fig 9. The Kolmogorov-Smirnov (K-S) test of similarity of distributions for the growth parameter phenotype

(linf) genetically stratified according to PAK6 genotype (similarly to Fig 7). The K-S test is shown for different

values of Bayley scale phenotype (Composite language score at 24 months).

https://doi.org/10.1371/journal.pone.0242684.g009

Fig 8. The distributions of phenotypes by genotype for three of the pairwise genetic variant effects. The numbers

of subjects with each genotype are shown under each panel. a. NELL1 shows a distribution that suggests a strong

dominance of the major allele for the Bayley scale score distribution. b. PPP1R12B shows a diametrically opposite

distribution between the homozygote and heterozygote. c. PLD5 shows the same as in b) but with a distinct

homozygous minor distribution.

https://doi.org/10.1371/journal.pone.0242684.g008
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of brain-specific or brain-related genes. It is not surprising that SNPs near genes that are

expressed in the brain and CNS are implicated in the neurological development, but this pat-

tern is also present in the three-way dependencies with growth and neurological development.

It is clear, perhaps not surprisingly, that the overall growth of the head circumference and the

development of the infant brain are strongly coupled. It is probably worth further investigation

to also determine the extent to which the growth of the early brain may be involved in regulat-

ing the overall growth of the fetus.

To explore the biological relevance of the candidate SNPs identified using our two-way and

three-way dependency measures, we compiled the set of 230 variants, including LD SNPs and

those located on the X and Y chromosomes. Functional annotation of the integrated set of

SNPs showed that majority are in intronic and intergenic regions, so we examined the poten-

tial regulatory functions of this set using RegulomeDB and identified two eQTL SNPs, selected

using three-way dependency analysis between neurological and growth phenotypes (S6 Table).

The eQTL SNPs rs2164807 (p-value of 1.39E-06; identified through dependency between

<Adaptive, linf, SNP>) and rs525410 (p-value of 4.56E-07; identified through<Social-Emo-

tional, lambda, SNP>) are located in the regulatory regions of ATOH8, a transcription factor

involved in nervous system development (GO:0007399) [42] and LAMC2 implicated in neur-

ite outgrowth among other functions [43], respectively.

The many genes identified in this work represent the multiple pieces of evidence that can

point to processes and pathways. While this integration is clearly at its outset, we can illustrate

something of its value by a comparison of the p-values linking SNPs to Bayley phenotypes

(either two- or three-way dependencies), relative levels of expression in the brain, placenta and

other relevant information, and the attribution of effects of variants in genes on human pheno-

types as recorded in the literature. To illustrate this kind of integration, we compiled two tables

of relevant SNP variants that could be linked to neurological development. While it is some-

what artificial to separate growth and brain development in the presence of so many pleiotro-

pic effects, we do so for simplicity. They should be considered together. Table 8 identifies the

SNPs, the genes nearby or containing the SNPs, the expression levels and effects linked to

brain and neurological development or linked to relevant human traits reported in the

literature.

Similarly, we compiled a table of relevant SNP variants we identified that could be linked to

growth in a broader sense and therefore could be directly relevant to fetal and early childhood

development. Table 9 identifies 17 of these SNPs, the genes nearby or containing the SNPs, the

expression levels and links to the literature.

The X-linked gene, DMD, did not have a low enough p-value to be included in the above

tables (1.5x10-5), but it is particularly relevant to brain and fetal and early childhood develop-

ment, and should be kept in mind as a possible player in some cases. This is the gene mutated

in Duchenne muscular dystrophy. The dystrophin protein provides a key part of an actin-

binding, multifunctional unit, a complex that provides a key component of an astrocyte “foot”

that engages neurons in the developing brain [20]. There is now clear evidence of developmen-

tal disturbances that result in neuropsychiatric abnormalities in children, particularly males

with mutations in DMD [73]. Dystrophin is also widely expressed, and therefore likely is

engaged in more functions than only in brain and muscle as part of the dystrophin associated

complex. We should therefore consider the link to the DMD gene in this study as a pointer for

future investigation.

We have explored the integration of the identified set of predicted regulatory SNPs (anno-

tated by their nearby genes) in another way by constructing a regulatory network to find key

genes and/or transcription factors potentially involved in neurological and growth develop-

ment and evaluated their expression profile in normal tissues using GTEx database [34]
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(https://gtexportal.org). The transcription factor regulatory network constructed by Regulo-

meDB (Results section, Fig 5) points to key genes, most of which were identified through our

three-way dependency measure. Examples include PAK6, which is a gene central to signal

transduction and cellular regulation. PAK6 is involved in several cellular processes, such as

cytoskeletal dynamics, cell motility, gene transcription, and death and survival signaling, and

is highly expressed in several brain-tissues (https://gtexportal.org). Another notable example is

MPPED1, proposed as the most abundant transcript in the brain [74], particularly in frontal

cortex and cerebral cortex, based on GTEx, HPA (https://www.proteinatlas.org), and FAN-

TOM5 [75].

While exploring the tissue-specific gene expression and regulation database (GTEx), we

identified additional 53 eQTL SNPs, most of which indicated expression in several tissues of

the brain, muscle and nerves (S7 Table). To capture additional functional information, we

used FUMA analysis, as described in the methods and the result sections (Fig 6). Two loci

were probed for their chromatin effects: rs178850 (p-value of 2.02x10-8, in the intronic region

of RAB11FIP4 gene, identified by three-way dependency: <Adaptive, lambda, SNP>); and

rs6672510 in the intronic region of PLD5 gene (4.46x10-8; identified by two-way dependency;

<lambda, SNP>) (Fig 6). Both variants are indicated as having intra-chromosome interac-

tions using the chromatin interaction mapping data.

It is interesting that while RAB11FIP4 gene expression is not exclusive to the brain, its

expression in brain tissues is higher than in all other tissues reported by GTEx database.

RAB11FIP4 has the highest expression in cortex and frontal cortex. Note also that the neigh-

boring gene NF1 (containing the oligodendrocyte myelin glycoprotein gene, OMG) is well

known to affect neural growth, and is highly expressed in brain and thyroid. As illustrated in

Fig 6A, eQTL mapping of RAB11FIP4 gene identified three genomic regions in chromosome

17, MIR4724, CTD-2349P21.9, and RHBDL3. The non-coding micro RNA MIR4724 is

involved in post-transcriptional regulation of gene expression. The non-coding transcript

CTD-2349P21.9 is highly expressed in several brain tissues–it has the highest expression in

cerebellar hemisphere and cerebellum (responsible for coordination and voluntary movement)

compared to all 53 tissue types reported in GTEx database. A similar pattern is observed for

RHBDL3 gene. Expression of this gene is the highest in brain tissues, particularly in frontal

cortex and cortex (responsible for cognition, memory, and language).

Additionally, four genes, UTP6, CTC-542B22.2, COPRS, RP11-848P1.5, linked via chroma-

tin interaction to the RAB11FIP4 locus, were shown to have high expression profiles in all

brain tissues (https://gtexportal.org). Taken together all these relationships point strongly to

their important role in neurological and growth development in early stages of life.

High expression levels in several brain tissues in GTEx database are also observed for PLD5

gene, with the highest expression in cerebellar hemisphere second to aorta tissues followed by

cerebellum. Additionally, chromatin interaction pointed to five genes–AL590483.1, ZBTB18,

EXO1, CHML, KMO–with expression levels in several tissues of the brain. Two of these genes,

AL590483.1 and ZBTB18, are also expressed highest in cerebellar hemisphere and cerebellum.

Expression in cerebellar hemisphere and cerebellum points to the potential role of these genes

in movement and activity, fully consistent with our finding of its pleiotropic effect on neuro-

logical and growth phenotypes.

While the wide range of information that is integrated here suggests several intriguing con-

clusions, primarily that the brain-specific, or fetal/placenta-specific character of most of the

implicated genes points to brain development as central to growth and infant neurological

development, the outstanding weakness of this study is that, to our knowledge, there is no

comparable data set that can be used for cross validation. While the number of GUSTO sub-

jects is substantial, it was not statistically sufficient, resulting in some of the candidate relations
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included in the collection of evidence to be on the border of significance when considered

alone. The arguments in favor of collecting a large number of candidate relations, including

those that are borderline significant, are substantial if any patterns can be ascertained. This

integration of the evidence from our analysis and the knowledge from previous work has

allowed us to consolidate such a body of evidence related to neurological development and

fetal and early childhood growth in healthy infants that should provide the basis for many

future investigations. The results of this study thus represent an initial effort to implement

multi-variable genetic analyses to generate a collection of genetic results that can be marshalled

to form specific biological hypotheses that need further examination. Further studies will need

to provide some validation from independent data sets, as well as capturing existing biological

evidence of developmental pathways involving the identified gene candidates and regulatory

networks.

4. Methods

4.1. Data description

4.1.1. Description of key features of the GUSTO data. The GUSTO study of Singapore

is the one of the most comprehensive birth and parent-offspring longitudinal cohort studies. It

focuses on phenotypic measurements, genetic and epigenetic observations and medical rec-

ords with detailed study from gestation through the early years of the child’s life [3, 4].

The primary purpose of the GUSTO cohort study is to evaluate the role of developmental

factors and influences, including genetic and environmental factors, that affect growth and

health. The other objectives are to identify maternal effects on offspring and association with

early lifestyles and nutrition that may influence growth and neurocognitive development.

The GUSTO study is an ongoing cohort study that began in 2009. The pregnant women

aged 18 years and above were recruited when they attended their first trimester antenatal dat-

ing ultrasound scan clinic at Singapore’s two major public maternity units, the National Uni-

versity Hospital (NUH) and the KK Women’s and Children’s Hospital (KKH) between June

2009 and September 2010. The mothers had to be Singapore citizens or permanent residents

with Chinese, Malay or Indian ethnicity and homogeneous parental ethnic background,

intending to deliver in NUH or KKH and to reside in Singapore for the following 5 years.

Mothers receiving chemotherapy, psychotropic drugs or who had type 1 diabetes mellitus

were excluded from the study. The women also agreed to donate birth tissues to the study at

delivery, i.e., cord blood, cord, and placenta.

Ethics approval and consent. Written informed consent was obtained from all women who

participated in the study. Approval for the study was granted by the ethics boards of both KKH

and NUH in Singapore. These boards are the Centralized Institute Review Board and the

Domain Specific Review Board, respectively.

The recruitment of the mothers for GUSTO cohort study was completed in September 2010.

1,163 pregnant women were recruited: 56% of parents were Chinese, 26% were Malay, and 18%

were Indian. The women were on average 30 years old, ranging between 18 and 46 years.

Women recruited in the first trimester returned to the hospital at 19–21, 26–28 and 32–34

weeks of gestation for ultrasound scans to assess gestational age and growth. Detailed inter-

views were conducted in the clinic at the time of recruitment, and at about 26–28 weeks gesta-

tion. Birth tissues were obtained, and anthropometric measurements of the newborn were

conducted within 24 hours of birth. During infancy, the babies were examined at home at 3

weeks, 3 months, and every 3 months thereafter until 15 months of age. The children were

then evaluated at the clinic at 18, 24, and 36 months, and the Bayley scale scores used in this

work were acquired at 24 months.
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4.1.2. SNPs, Phenotype data, and growth parameter data used for the analysis–results

elucidated in the GUSTO study. The acquired genotype data consists of 933,886 SNPs from

1,073 infants and parents, as previously reported. The phenotype data consists of 10,378 fea-

tures from 1,237 infants and parents, which include ethnicity, gender, anthropometric mea-

surements, socioeconomic measurements, and neurological phenotypes such as Bayley scales

of infant and toddler development, Brief Infant Sleep Questionnaire (BISQ), Child Behavior

Check List (CBCL), and Infant Toddler Social Emotional Assessment (ITSEA). The pheno-

types data, of particular note the Bayley scale data, were collected by professionals.

In this paper, we only focused on the infant data. Moreover, in this paper we only consider

three types of information: genotype (SNPs), neurological, and growth data. The neurological

data consists of the following subsets:

1. Bayley, 60 features: 5 categorical and 55 numerical,

2. BISQ, 13 features: 4 categorical and 9 numerical,

3. CBCL, 341 features: 296 categorical and 45 numerical,

4. ITSEA, 153 features: 152 categorical and 1 numerical,

where categorical features are qualitative variables that take on non-numerical values (words).

All neurological data used in this paper was measured from 6 months to 48 months. Further-

more, when analyzing the genetic component of the infant development, we used only 5 aggre-

gate or composite Bayley scales: Cognitive, Language, Motor, Adaptive Behavior, and Social-

emotional, measured at 24 months. We simply refer here to Bayley phenotypes when directly

referring to these 5 aggregate scales.

The growth data we used consists of three parameters of Gompertz-like growth model fits

that describe fetal head circumference growth as a function of gestational age. The growth

parameters were available for 1,053 infants (see Section 4.2.3).

We analyzed multiple pairwise and three-variable dependencies. For each type of depen-

dency, we only used infants with values in all analyzed variables, and vice versa, we removed

genetic variables (SNPs) with missing values (see Section 4.2.4). The following is the summary

of the different types of dependencies we analyzed and the corresponding number of SNPs

and samples used in each type:

1. Pairwise dependencies of the type<Neuro, Growth>, 281 infants

2. Three-variable dependencies of the type<Neuro, Growth, Growth> and<Neuro, Neuro,

Growth>, 281 infants

3. Pairwise dependencies of the type<Bayley, SNP>, 495,719 SNPs, 433 infants

4. Pairwise dependencies of the type<Growth, SNP>, 448,658 SNPs, 1053 infants

5. Three-variable dependencies of the type<Growth, Bayley, SNP>, 495,719 SNPs, 428

infants

4.2. Preprocessing of data

The flow of the data analysis using Delta measures is shown schematically in Fig 10. There are

three principal stages of the analysis: Preprocessing, Delta Computation, and Statistical Evalua-

tion, leading to genetic candidates. Note that by “gene candidates” we refer to nearby genes to

the implicated SNPs. Although we use the closest gene to a SNP to indicate a locus, in each

case we also examine the region of the genome to determine if there are other nearby genes of

interest.
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In the preprocessing stage, we generate input data files for the Delta software from the raw

data of SNPs, neurological phenotypes, and growth parameters. The input data must be dis-

crete, represented by positive integers, so all continuous data must be binned. To account for

specific structures and properties of data subsets, SNPs, neurological phenotypes, and growth

parameters were preprocessed individually.

4.2.1. Preprocessing SNP data. The genotype data for the infants of the GUSTO project

consists of 933,886 SNPs, obtained using the Illumina Omniexpress & exome array. SNPs with

call rates < 95%, or minor allele frequency < 5%, or those that failed Hardy–Weinberg Equi-

librium test were excluded from the analysis. Out of 1071 infant subjects, 2 infants with no

genotype information were removed. To prepare the data for our analysis, we reduced the

amount of redundancy and gaps in the SNP data. Fig 11 summarizes the SNP filtering steps.

Preprocessing of genotype data starts with the removal of constant SNPs that show no vari-

ation among all infants in the study (Step 1). At Step 2, the completely correlated SNPs, i.e.,

Fig 10. Flow chart of the process of selecting gene candidates using our dependency measures. The measures of multi-variable dependencies and Delta are described

in Section 4.1.3, and the preprocessing of phenotypes and SNP data are described in Section 4.2. The statistical evaluation is explained in Section 4.3.

https://doi.org/10.1371/journal.pone.0242684.g010

Fig 11. The preprocessing steps of the genotype data showing the number of SNPs removed from Delta analysis.

https://doi.org/10.1371/journal.pone.0242684.g011
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SNPs that are in complete linkage disequilibrium, are “collapsed” for the dependency analysis,

keeping one SNP per correlated group of SNPs. Note that these correlated SNPs are omitted

only at the stage of dependency detection, since they do not add any more information about

dependency and put back into the analysis once the candidate dependencies have been detected.

Preprocessing continues with Step 3 by removing SNPs with more than 25% of missing values.

At Step 4, we compute mutual information for all pairs of SNPs and “collapse” SNPs with high

(over 1.2) mutual information, keeping one representative of each mutual information cluster.

At Step 5, we remove SNPs with extreme distribution of genotypes, which are the SNPs that

show no variation in more than 95% of infants. In our analysis, because of the gender differ-

ences in the SNP variables and the potential differences between male and female growth rates,

we decided to eliminate effects of gender; that is, we looked only for those effects that were com-

mon, and therefore Step 6 of the preprocessing removes the SNPs from X, Y chromosomes. Fig

11 shows the number of removed or collapsed SNPs at each step after all the preprocessing

steps. There are 557,070 SNPs in 1071 infants selected for the dependency analysis.

We performed the dependency analysis separately for SNPs sets from X, Y chromosomes,

including the pseudoautosomal regions, which were removed during preprocessing at Step 6

for male and female infants. The number of male and female subject as well as the number of

SNPs used in each two-way and three-way dependency analysis are provided in S5 Table. Fig

12A and 12B shows the distributions of growth and Bayley phenotypes divided by male and

female infants used in the dependency analysis. The differences in the distributions between

males and females were observed in growth phenotypes linf and lambda. However, no

Fig 12. Distribution of SNPs in the X and Y region for Bayley’s and growth phenotypes. a) The distributions of Bayley phenotypes by male

and female infants used for the two-variable<Bayley, SNPs> analysis. b) The distributions of Growth phenotypes by male and female infants

used for the two-variable<Growth, SNPs> analysis.

https://doi.org/10.1371/journal.pone.0242684.g012
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significant differences between male and female distributions were detected in either Bayley

scale or the alpha growth phenotypes.

4.2.2. Preprocessing neurological data. The original phenotype data contains 10,378 fea-

tures, consisting of categorical (taking on a small set of word answers to questionnaires) and

numerical phenotypes. The phenotype data includes various observations such as anthropo-

metric measurements and questions about child environment at different time points for

1,237 individuals. We focused on neurodevelopmental data of each child, consisting of Bayley

scales, BISQ, CBCL, and ITSEA. Preprocessing of categorical and numerical neurological phe-

notypes was done separately. In this study we only used the Bayley scale data.

During preprocessing, we removed categorical phenotypes with more than 10 different cat-

egories. Having variables with too many possible values strongly weakens the statistical power

of dependency detection. To convert the categorical phenotypes into the input for the depen-

dency analysis, their values were encoded using integers.

To preprocess the numerical phenotypes, we examined the distributions of values and it

was commonly appropriate to discretize their values into four bins as follows: (-1,l], (l,μ], (μ,

r], (r,1), where μ is the mean and l and r are the medians of the values below and above of the

mean. Each bin was encoded with an integer. Similar to Step 5 of the SNP preprocessing (Fig

11), categorical and numerical phenotypes that have the same value in more than 95% of

infants were removed.

4.2.3. Preprocessing growth data and the growth model description. A non-linear

mixed effects (NLME) Gompertz-like model was used to fit the growth data (head circumference)

to obtain three parameters characterizing growth of each individual subject. These describe the

final growth limit for head circumference (linf), nonlinearity of head growth deceleration at

around 20 weeks gestation (lambda), and an early velocity of head circumference (alpha). The

growth of each infant is represented by these three parameters. We further discretize these growth

parameters using the same approach as in the case of numerical neurological phenotypes.

Model description. Subject head circumference growth trajectories from early pregnancy to

early childhood (ended at 54 months) were characterized using the following NLME model

Yij ¼ ½Lp þ Li�e
� ½apþai �exp½� bptijð1� yp½1� e

� ½lpþli �tij �Þ� þ εij:

This functional form was selected from among several candidate models based on the AIC

and examination of residual plots. As in the standard three-parameter Gompertz model [75],

fixed-effect (population-level) parameters are used to characterize the growth limit (Lp), ratio

of lower to upper limit (αp), and growth rate (βp) for the entire population. To this model, two

more fixed-effect parameters are added to characterize the rate (θp) and nonlinearity (λp) of

the deceleration in growth rate that begins around 20 weeks gestation. Finally, to account for

variation in growth trajectories between subjects, subject-level effects were inferred for each

subject for these parameters: growth limit (Li), ratio of lower to upper limit (αi) and nonlinear-

ity of growth deceleration (λi), (linf, alpha, lambda). The subject level random effects were

assumed to be uncorrelated with each other or with the error term (εij).
Parameter Estimation for growth model. The model was fit to head circumference data mea-

sured on subjects from four birth cohort studies included in the Bill and Melinda Gates Foun-

dation knowledge integration database. The combined dataset included a total of N = 11,818

subjects, each contributing between 2 and 18 measurements of head circumference, measured

between 8 and 290 weeks post-menstrual age [77]. Note that a 5-parameter growth curve was

fit to the entire population and allowed for subject-specific deviations from the population

mean curve in 3 parameters (linf, alpha, lambda) as shown in Table 10. After that the individ-

ual estimates for these 3 parameters across 1,191 subjects of GUSTO cohort study were used as
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the input growth data in our downstream dependency analysis. Calculations and fitting to the

individual infant data were completed using the nlme package [78] in the R statistical software

(https://CRAN.R-project.org/package=nlme [79]).

4.2.4. Missing data: Selecting optimal subsets by linear programming. Once the data

preprocessing is complete, we needed to face the problem of missing data among the variables.

When performing the dependency detection using Delta software, missing data can cause sig-

nificant fluctuations and decrease reliability of the results. We therefore selected subsets of

data that reduce the number of missing values while keeping as many subjects and variables as

possible. Many clustering and bi-clustering methods are suitable for this task, but we decided

to use a simple linear programming optimization method.

Linear programming is a method for optimization of a linear objective function z, subject

to linear inequality constraints allowing us to maximize the number of variables and subjects

while minimizing the amount of missing values (assuming all missing values are encoded as

-2) as follows:

maximize z ¼ nþm: ð1Þ

subject to
Pm

j¼1
bij > � 2m; ði ¼ 1; . . . ; nÞ; ð2Þ

and Mj=n � t; ðj ¼ 1; . . . ;mÞ; ð3Þ

where n is the number of subjects, m is the number of variables, bij is a binned value of a vari-

able j in a subject i, Mj is the number of missing data in a variable j, and τ is a threshold for

missing values for each variable.

Constraint (2) ensures that we remove a subject if each of the m variables has missing val-

ues. Note that constraint (2) assumes that a missing value is represented by -2 and all other

Table 10. Parameter estimates for Gompertz model with nonlinear deceleration fit to head circumference data from children between early pregnancy and earlys

childhood.

a) Fixed Effect (population level) Parameter Estimates

Estimate Std Error df t-value p-value
linf 49.96582 0.03487290 62416 1432.780 0

alpha 5.62027 0.01535200 62416 366.0939 0

beta 0.10450 0.00025640 62416 407.5520 0

theta 0.75950 0.00148836 62416 510.2935 0

lambda 0.01667 0.00007920 62416 196.5385 0

b) Subject Effect Parameter Estimates

Var. Comp.

linf 1.305845

alpha 0.1648373

lambda 0.0005637008

residual 0.7218403

a) Fixed parameter estimates. The top row shows maximum likelihood estimate for the growth limit parameter linf, the estimated standard error for the maximum

likelihood estimator, and the corresponding degrees of freedom (df). t-value is the test statistic (in this case a t statistic) for the null hypothesis that linf = 0. Because the

degrees of freedom are so large, the null distribution of the test statistic is essentially a normal distribution, and p-value = 1−2ϕ(|t�|), where ϕ is the standard normal cdf.

The additional rows follow the same pattern for the other fixed effect (i.e., population-level) parameters. b) Subject parameter estimates. The maximum likelihood

estimate of the variance parameter of the distribution of the subject-level random effects of the growth limit parameter is shown in the first row. The additional rows

represent estimates for the other subject-level variance components as labelled.

https://doi.org/10.1371/journal.pone.0242684.t010
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values are non-negative, therefore, if a subject has at least one variable with non-missing (non-

negative) value (out of m variables), then the sum of binned values of all variables would be

higher than -2m. However, if values of all m variables are missing for a subject, the sum of

binned values is equal to -2m.

Constraint (3) ensures the amount of missing data (the fraction Mj/n) is below a certain

level (τ) for each variable. In order to find the solution to our linear programming problem,

we need to provide the value of τ. During the analysis of the pairwise dependencies between

the neurological phenotypes and the growth parameters, we used τ = 25%. For the analysis of

all other types of dependencies τ was set to 0.

Using our linear optimization method, we selected optimal subsets of variables and samples

to be used in the dependency analysis, as described in Section 4.3.

4.3. Multi-variable dependency using information theory methods

Biological data is filled with various dependencies since it is obtained from complex systems

with many interactions. Therefore, we need detection of multivariable dependencies of diverse

kinds in order to effectively analyze biological data. We have recently introduced an informa-

tion theory-based set of dependency measures and implemented the discovery of multivariable

dependencies in a large set of variables capitalizing on a distinct advantage of separating the

detection of the dependence from defining the nature of the dependence [13–15]. In general,

information theory measures have several advantages: they are inherently model-free and

non-parametric in nature, and they exhibit only modest sensitivity to undersampling [80]. We

have described these methods in several papers previously [13–15] and will briefly summarize

the methods here for up to three variables, which is the maximum number used in this paper.

Our information theory-based method iteratively searches through a set of variables (e.g.,

SNPs, growth parameters) and systematically detects strong dependencies with increasing

degree, starting with the pairwise dependencies, then three-variable dependencies, and so on.

In this paper, we limited our method to only pairwise and three-variable dependencies. To

measure a general dependence between two variables, X and Y, we use mutual information I
(X,Y), defined as

IðX;YÞ ¼ HðXÞ þHðYÞ � HðX;YÞ; ð4Þ

where H(X) and H(Y) are single entropies of variables X and Y and H(X,Y) is their

jointentropy.

To measure a general dependence between three variables, X, Y, and Z, we use symmetric

delta �DðX;Y;ZÞ. Before providing the definition for the symmetric delta, we need to introduce

interaction information, which was proposed long ago as a multivariable generalization of

mutual information [80]. For three variables interaction information I(X,Y,Z) is defined as

IðX;Y;ZÞ ¼ IðX;YÞ � IðX;YjZÞ: ð5Þ

Given Eq 5, we define differential interaction information Δ as the difference between val-

ues of successive interaction information arising from adding variables:

DX ¼ IðX;Y;ZÞ � IðY;ZÞ

DY ¼ IðX;Y;ZÞ � IðX;ZÞ

DZ ¼ IðX;Y;ZÞ � IðX;YÞ

ð6Þ

Here ΔX is called the asymmetric delta for the target variables X. In order to detect a fully

cooperative dependence among the variable set, we want any single measure to be symmetric.
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As a result, we define a more general measure �D, called the symmetric delta (or delta), by mul-

tiplying Δ with all possible choices of the target variable:

�DðX;Y;ZÞ ¼ DX � DY � DZ: ð7Þ

The key property of the symmetric delta is that if any of the three variables is independent

of the others, then the measure is zero. Note that although we focus on three-variable case

here, this definition can be generalized to any number of variables.

Note also that the asymmetric deltas are related in a subtle way:

DX þ IðX;YÞ þ IðX;ZÞ ¼ O

DY þ IðX;YÞ þ IðY;ZÞ ¼ O

DZ þ IðX;ZÞ þ IðY;ZÞ ¼ O

ð8Þ

where O is the multi-information, called total correlation when introduced by Watanabe [81].

This measure captures the full dependence, for all variable subsets, and is zero only if all the

variables are independent. For three variables the multi-information is defined as

O ¼
P

v2fX;Y;ZgHðvÞ � HðX;Y;ZÞ: ð9Þ

High absolute values of the Delta measure or mutual information indicate that the corre-

sponding variables are collectively interdependent. On the other hand, small values of Delta

and mutual information indicate that all variables are approximately independent. Note that

both measures are symmetric under permutation of variables. By our definition, values of

three-variable Delta are negative, while values of mutual information are always positive.

Mutual information and Delta can detect not only linear correlations, but any nonlinear rela-

tionships among variables.

The dependency can sometimes be usefully interpreted as a relation among variables

described as logical functions such as AND, OR and XOR, albeit for more than a binary alpha-

bet. The Delta can effectively detect an XOR type of function, for example, which has no pair-

wise dependence and therefore no mutual information between any pairs of its variables.

The Delta measures and the methods for optimally computing these measures across large

data sets have been implemented in software we refer to here as the “Delta software”.

4.4. Statistical significance of dependency results

4.4.1. Delta p-values by permutation test. In order to estimate the significance of the

dependency scores calculated by Delta software, we carried out a permutation test by generat-

ing randomly shuffled input files and examining the distributions of resulting scores. We used

two criteria for analyzing the statistical significance: (1) its information score’s p-value, and (2)

whether the score is above or below the threshold calculated from the maximal random scores.

The information scores obtained as described below were both those not adjusted for ethnic

confounding and the adjusted values (see section 4.4.2)

To obtain unadjusted p-values of dependency scores we follow the permutation strategy

proposed by Churchill and Doerge [82]: we shuffle the input data, breaking the connections

between variables, compute the dependency scores of all shuffled tuples, and count how many

randomized scores are above the original score of interest. We repeat this procedure 1000

times tallying the number of scores above the score of interest. The p-value is then the fraction

the exceeding randomized scores take in the total number of tuples times 1000. Note that

when determining the statistical significance of pairwise dependencies, we permuted the values

of the phenotype variables thus breaking the phenotype-SNP relationships in the data, while at
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the same time preserving all linkages between SNPs. Similarly, for three-variable dependencies,

we independently permuted the values of Growth phenotypes and Bayley phenotypes, thus

breaking the relationships not only between phenotype and genotype variables, but also

between Growth and Bayley phenotypes. Note that these p-values are unadjusted, not account-

ing for multiple hypothesis testing.

Although we decided not to perform conventional multiple hypothesis testing, since the

goal of our paper is not to search for causal SNPs, we acknowledge that due to the large num-

ber of SNPs in our analysis the number of false positive may be high. To shed some light on

the amount of false-positives in our analysis, we followed the approach of Churchill and

Doerge [82] and calculated Family-Wise Error Rate (FWER). To calculate FWER, we find an

absolute maximum randomized score for each shuffle, construct a distribution of 1000 maxi-

mum randomized scores (since we performed 1000 shuffles), and find how many scores from

this distribution are above the original score of interest.

FWER is the probability of getting at least one false positive result given a large number of

comparisons we made (the number of SNPs in the analysis), so it is highly conservative and it

is not a surprise that many of our top dependencies have a high value of FWER. Nevertheless,

a number of our results showed low values of FWER. Furthermore, we used FWER to compare

the confounding effect of ethnicity on our pairwise dependencies (see the next section).

4.4.2. Ethnicity of subjects and possible confounding effects. Since the subjects selected

for data analysis are of three ethnicities, and it is clear that there are allele frequency differences

among the Chinse, Indian and Malay populations, it was necessary to examine the possibility

of confounding effects of the ethnic differences on our genetic results. Because the number of

subjects is rather small, we divided the subject population into two groups: (1) Chinese, and

(2) Indian + Malay. The full population of infants with no missing Bayley phenotypes had 433

subjects, 258 of which were Chinese and 175 were Indian or Malay. We then used a binary var-

iable εi indicating ethnicity (Chinese or Indian-Malay) to examine the relevant conditional

probabilities, and determined the confounding effects of the ethnicity on the mutual informa-

tion measures. The probabilities sum to one: P(ε1) + P(ε2) = 1,

For the set of SNPs, S, and the set of Bayley phenotypes, B, and

pðbjsÞ ¼
P

ipðbjs; εiÞ

The adjusted mutual information then is

~Iðb; sÞ ¼
X

s2S;b2B

pðsÞpðbjsÞlogðpðbjsÞÞ �
X

s2S;b2B

pðsÞpðbjsÞlogðpðbÞÞ

Table 11 shows the values of adjusted mutual information for the dependencies from Tables

2 and 3.

The changes for most of the p-values are rather small, some almost non-existent. However,

we note that there are several that improve modestly upon adjustment, and a couple, CERS6

and LRRTM3 for which the confounding effect is dramatic, and significantly reduces this

dependency.

4.5. Functional genomic analysis

4.5.1. Variant annotation. Functional annotation was carried out using Ensemble Vari-

ant effect predictor (VEP; https://www.ensembl.org/vep) for two-way and three-way depen-

dency sets. VEP determines the effect of genomic variants on genes, their transcripts, and

protein sequence, as well as regulatory regions. Additional identifiers for each variant gener-

ated by VEP includes information such as gene symbol, variant specificity (such as exonic,
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intronic, UTRs), splice site (donor/acceptor), transcription factor binding sites, synonymous

codon changes and frameshift variants.

4.5.2. Regulatory analysis. The majority of the identified variants in the two-way and three-

way dependency sets are located in the non-coding regions of the genome including intronic,

intergenic, upstream or downstream from genes and in 3’ and 5’ UTRs. We examined their poten-

tial effect on regulatory functions using RegulomeDB [31] (http://www.regulomedb.org). Regulo-

meDB, an integrated database, includes all available ENCODE transcription factor ChIP-seq,

histone ChIP-seq, FAIRE, and DNase I hypersensitive site data [83], transcription factor ChIP-seq

data available from the NCBI Sequence Read Archive [84–92] as well as a large collection of eQTL

Table 11. Results for dependencies adjusted for the confounding effect of ethnicity. A. is for the Bayley phenotypes, and B is for the growth phenotypes.

A

Bayley Phenotype SNP Gene MI P-value (MI) FWER (MI) Adjusted MI P-value (Adj.) p-value change (%) FWER (Adj.)

Motor rs10833478 NELL1 0.0843 3.41E-07 0.142 0.0846 3.25E-07 4.7% 0.135

Motor rs645026 YEATS4 0.0832 4.40E-07 0.180 0.0828 4.78E-07 8.7% 0.197

Adaptive rs7387693 MTMR7 0.0847 9.54E-07 0.359 0.0844 1.05E-06 9.9% 0.384

Adaptive rs7462219 MTMR7 0.0807 2.67E-06 0.693 0.0802 2.96E-06 11.1% 0.735

Adaptive rs4955988 CACNA2D3 0.0817 2.13E-06 0.617 0.0812 2.38E-06 11.5% 0.651

Adaptive rs1291359 HTR7P1 0.0829 1.55E-06 0.506 0.0839 1.17E-06 24.2% 0.414

Language rs11658800 ELAC2 0.0803 2.48E-06 0.670 0.0828 1.31E-06 46.9% 0.437

Language rs7239403 SMIM21 0.0803 2.51E-06 0.675 0.0853 7.42E-07 70.5% 0.288

Social-Emotional rs12434723 C14orf177 0.0805 2.61E-06 0.680 0.0858 7.26E-07 72.2% 0.272

Social-Emotional rs11628108 C14orf177 0.0826 1.56E-06 0.510 0.0881 3.59E-07 77.0% 0.143

Motor rs7155811 TMEM260 0.0772 2.16E-06 0.610 0.0940 5.45E-08 97.5% 0.020

Social-Emotional rs1161106 LOC100507175 0.0811 2.28E-06 0.634 0.0780 4.78E-06 109.2% 0.876

Motor rs1449848 CPNE8 0.0772 2.16E-06 0.607 0.0645 5.19E-05 2305.1% 1.000

B

Growth Phenotype SNP Gene MI P-value (MI) FWER (MI) Adjusted MI P-value (Adj. MI) p-value change (%) FWER (Adj.)

Linf rs12734338 PPP1R12B 0.1130 2.23E-09 0 0.1141 2.23E-09 0.0% 0

Linf rs7981995 DACH1 0.0232 7.18E-06 0.936 0.0231 7.57E-06 5.5% 0.944

Alpha rs7101173 MIR6072 0.0248 2.54E-06 0.619 0.0247 2.71E-06 6.7% 0.643

Linf rs373680 FBXO33 0.0232 6.94E-06 0.93 0.0235 5.83E-06 16.0% 0.895

Lambda rs4793500 CASC17 0.0259 1.16E-06 0.358 0.0256 1.46E-06 25.5% 0.427

Lambda rs564266 NTM 0.0241 4.05E-06 0.771 0.0249 2.47E-06 39.0% 0.620

Lambda rs773024 OSTF1 0.0236 5.53E-06 0.855 0.0229 8.57E-06 55.0% 0.952

Linf rs6884117 C5orf22 0.0241 3.86E-06 0.761 0.0234 6.18E-06 60.1% 0.908

Lambda rs154444 ZNF608 0.0232 7.08E-06 0.916 0.0257 1.33E-06 81.2% 0.404

Linf rs7071157 PFKFB3 0.0276 4.08E-07 0.157 0.0300 7.13E-08 82.5% 0.031

Linf rs6570627 UTRN 0.0250 2.20E-06 0.576 0.0240 4.19E-06 90.1% 0.789

Alpha rs10196354 ERBB4 0.0232 7.23E-06 0.937 0.0284 2.14E-07 97.0% 0.085

Lambda rs6672510 PDL5 0.0316 3.12E-08 0.013 0.0298 9.81E-08 214.3% 0.038

Alpha rs9691259 IGFBP3 0.0258 1.30E-06 0.4 0.0232 7.40E-06 469.8% 0.937

Linf rs6710428 CERS6 0.0264 8.83E-07 0.301 0.0224 1.19E-05 1253.3% 0.993

Lambda rs7075547 LRRTM3 0.0237 5.15E-06 0.836 0.0043 4.07E-01 7893823% 1

We show the population wide mutual informations and corresponding p-values, with the adjusted mutual informations and p-values, followed by the FWER value. The

three sets of SNP-phenotypes separated by thick lines are those for which: upper–the absolute change in p-values is less than 25% of the original; middle–the change in

p-value is less than 100%; lower the change in p-value is greater than 100%. Note that there are some dependencies for which the p-values improve on adjustment for

ethnicity confounding.

https://doi.org/10.1371/journal.pone.0242684.t011
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[86, 93–100], dsQTL [101], and ChIP-exo [102] data. We queried RegulomeDB using the dbSNP

identifiers of our candidate variants, resulting in a set of known, validated and/or predicted regu-

latory elements. These were categorized based on their potential functional impact and integrated

to assemble a network based on common transcription relationships.

4.5.3. Genotype-Tissue Expression identification. Since the phenotypes of interest in our

study were neurological and growth related, we examined our set of prioritized gene candidates

using the Genotype-Tissue Expression (GTEx v7; http://gtexportal.org) portal, a catalogue of tis-

sue-specific and shared regulatory expression quantitative trait loci (eQTL) variants. This

allowed us to acquire additional information on healthy human gene expression patterns in

multiple tissues [103]. The output includes the levels of gene expression across all tissue types as

well as within tissues, some of which are of interest as they are involved in neurological and

growth processes such as expression levels in skeletal muscles, tibial nerve and multiple tissues

of brain. GTEx database (http://gtexportal.org) captures the estimated effect size of an eQTL

allele on gene expression, which allows for identifying genes, whose expression is affected by

genetic variation, providing information on variant’s potential involvement in phenotype.

4.5.4. Regulatory interaction network analysis. The NetworkAnalyzer package [104–106]

available in Cytoscape v.3.3.0 (http://www.cytoscape.org) was used for clustering and visualiza-

tion of both regulatory and direct protein-protein interaction network. No notable results from

this are reported. NetworkAnalyzer allows for computing a set of graph parameters for undi-

rected and directed networks. In particular, we used betweenness centrality for clustering and

visualization of both regulatory and direct protein-protein interaction networks.

4.5.5. Functional mapping and annotation of genome-wide association studies

(FUMA). To further evaluate the candidate set of variants identified by our two-way and

three-way dependency analysis, we used FUMA v1.3.3c [35] (http://fuma.ctglab.nl), which

uses a set of statistically significant SNPs as an input and provides functional annotations.

FUMA uses data from positional mapping, including eQTL mapping, and 3D chromatin inter-

action mapping (Hi-C for 14 human tissues including prefrontal cortex and hippocampus), to

predict potential regulatory effects from chromatin states at the position of the SNP of interest,

and MAGMA gene expression analysis [35], selecting 53 tissue types from GTEx [34]. We

used default parameters during the analysis. Out of the set of resulting SNPs, we focused on

two interesting loci located in RAB11FIP4 and PLD5 (see the results section and Fig 6).
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