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Abstract Results

OBJE(‘TTIVES: F1brob1ast. growth factor receptor (FGFB) inhibition has been 1nvest.1g.ated as a Model Modifications and Fxtensions Model Fits

potential target for treating cancer. Hyperphosphatemia (HP) has been observed clinically fol-

lowing FGFR inhibition due to its role in regulating phosphate (P) balance through FGF23, o blished Model ded Model Predictions Compared with Observed Data:
which regulates urinary P excretion and indirectly impacts dietary P absorption and calcitriol Existing Published Model was Expande Phosphate
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(C) activation. An existing systems pharmacology model was leveraged to explore whether | . o . . . .
HP circumvention can be achieved via intermittent dosing and concomitant P binders fol- ° T‘_Je mf)del now 11.1c1.udes a predictive population PK for ASP5878 and integrates FGFR/FGF23 regulation of phos-
lowing administration of ASP5878, an FGFR inhibitor investigated for treatment of solid p’_late into the existing QSP model.

tumors (NCT02038673). I
METHODS: A systems pharmacology model (Bone, 2010) was extended to describe changes
in serum B, C, parathyroid hormone (PTH), and FGF23 following oral ASP5878 administration.
The model evaluated concomitant P binder and impact of varied dosing regimens on exposure-
related P changes. Analyses were conducted in R; simulation and estimation included mrgsolve
and minga. QD and BID ASP5878 dosing, total daily dose, and intermittent, 5 days on / 2 off,
and 4 days on / 3 off, regimens were considered. o ‘“t"""e/
RESULTS: ASP5878 PK followed a 1 compartment model (typical t1/2 = 2.63h). Added math-
ematical descriptions included: FGF23 control urinary B PTH and C production, with feed-
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nese extensions were expressed through ordinary differential equations (QR code: equations, PK parameters
and new system model parameters).

 FGFR-related effects exist in kidneys (Vitamin D regulation and phosphate excretion), in PT gland (PTH release),
and in the gut (phosphate bioavailability indirectly through Vitamin D changes).
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Model Predictions Compared with Observed Data:

b?l(:k on F(.}l.?23 production from P and C. P binder was estlmate.d to decrease its dlgtary FarR3 ™ Kiofho N 0B £, Calcitriol

bioavailability by up to 32%. The extended model described the time-course and magnitude s omp [ T ey ) Fuid __ Intracellular

of dose-related increases observed for B C, FGF23 and PTH, including P > 6 mg/dL at doses > > oL . A i TR :

32 mg/day. P binder was predicted to mildly alleviate the increase at targeted doses. Efficacious 1,25-(OH),D | (Phosphate reabsorption Soky,  (Caitrol ) = e W
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response was not obtained by any simulated regimen that minimized to acceptable P o . /T
intestinal Ca and P absorption PTH % —
CONCLUSIONS: Results from the extended systems model supported program termination. Ca NED S
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1. Systems pharmacology model [1] extension with population PK for exposure-response reabscrption Sabos LA =
on serum phopshate, calcium, parathyroid hormone (PTH), and FGF23 following oral l o |
ASP5878 administration. See QR code for further details. Effects: (+) stimulatory () inhibitory (+/-) bidirectional ) —fluxes = = binding effects (Il bone remodeling feedback M; \/ o s P v
. . . . . . Ca = calcium, ECF Ca = extracellular fluid Ca, OC = osteoclast, OCpre= OC precursor, OB = osteoblast, ! | | | 0-, . . - : . . .
2. Evaluated concomitant P binder and impact of varied dosing regimens on exposure-related OPG = Osteoprotegerin, PO, = phosphate, PTH = parathyroid hormone, RANK = receptor of NF-Kappa B, RANKL = RANK 0 20 40 e R . ML B
Ligand, ROB = responding OB, TGF@ = transforming growth factor beta, 1-a-OH = 1 alpha hydroxylase
P changes. Symbols = Clinical Observations; Lines = Individualized Model Predictions.

3. Population PK model development in NONMEM®. All other analyses were conducted in
R [2]; simulation and estimation included mrgsolve [3] and minqa [4].
4. Simulations:
e Can dose-adjustments, with or without P-binder, avoid hyperphosphatemia? (See QR

Figure 1: Multiscale physiologic model; reproduced from Peterson and Riggs'!! with proposed modifications and
extensions noted.
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code) T
 Simulation scenarios: QD and BID ASP5878 dosing, total daily dose, and intermit-

tent, 5 days on / 2 off, and 4 days on / 3 off; with and without P-binder. Figure 5
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on multiple physiologically-based homeostatic mechanisms for phosphate balance. * " phosphate binder
. . . . Bone - . . B
 The impact of phosphate binder concomitant treatment could also be integrated into the calcium ﬂﬂﬂﬁ effect

systems model.
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 Serum phosphate response to FGFR inhibitor therapy was associated with drug exposure \ )
and the magnitude and time-course of these changes was predicted to be influenced by A caloidiof
. . - alcitrio
the dosing regimen. 2oty | y c=anln)
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