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I My Perspective as a Pharmacometrician

It all depends on your

Point




I ISPOR 2020 TOP 10 HEOR TRENDS (1-5)

] Real-World Evidence

Real-world evidence in healthcare decision making has risen in this year's trends list
due to a number of converging factors.

2 Drug Pricing

Pressure is increasing on drug makers as to how they price their products.

3 Novel Curative Therapies

Many of these medicines represent great strides forward in treatment; however,
their pricing may put them out of the reach of many patients.

4 Overall Healthcare Spending

WHO reports that the world spent $7.5 trillion on health, representing close to
10% of global GDP.

5 Universal Health Coverage—Access and Equity

] Universal healthcare will remain an important issue as many countries still seek to
https://www.ispor.org/top10trends.pdf provide their citizens with healthcare.




I ISPOR 2020 TOP 10 HEOR TRENDS (6-10)

6 Value-Based Alternative Payment Models

Innovative, high-cost therapies drive the search for novel payment models.

e

7 Price Transparency

Lack of clarity about information on pricing for healthcare products and services
impacts healthcare budgets and patients.

8 Digital Technologies Qy'

A new topic for 2020, digital healthcare is advancing rapidly with the potential to transform
healthcare delivery and outcomes assessment.

9 Aging Population S

This global demographic trend will have a long-term impact on healthcare delivery and >
costs for some time to come. 000

]0 Precision Medicine

Precision, or personalized, medicine is a growing field that intersects with big data.
https://www.ispor.org/top10trends.pdf ’ °
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I Model-Based Drug Development

Some of the typical methods and activities applied throughout the process

Quantitative
Systems

Pharmacology, PK,PK-PD,  Model Based
Biomarker  Probability of poc, population

Exposure-Response  Success PK-PD, Trial ' Trial Simulation,
] Design, Dose Filing Pop PKPD Comparative
I Selection for Safety & Effectiveness,

Translational

I Efficacy Real World
I Evidence

I

Phase Il
Phase Il

Post Marketing

Off-The-Shelf Disease Area Platform Content: Disease Progression, Quantitative Systems
Pharmacology, Competitor Model-Based Meta-Analysis, Trial Simulation Tools




I Modeling and Simulation Based Decision Making

Decision Criteria
» Consider cost/benefit trade-offs
» Safety
« Clinical utility/efficacy
* Health Economic
« Commercial
* Adjusted to consider the value systems
of the key stakeholders
« Patients
» Health care providers
» Drug developer
« Regulators

Start with Key Questions and
Potential Decision Paths

» Probability of target product profile

« Treatment regimens

 Trial designs

* Development strategies

* Indications

Selection of lead candidates

Models
* Drug & disease models
* Treatment population models
» Trial models

Financial & market models

Assumption Checking Decision
Assess sensitivity of = | Select highest value path
given the current state of
knowledge.

Other Information Sources
* Public evidence
Expert opinion / belief

conclusions to uncertainties
and assumptions.




I Some Examples




Model-Based POC for Alzheimer’s Disease Trial

Literature Meta-Data

K lo et al. | Alsheimer’s & Dementia 6 (2010) 39-53
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ORIGINAL PAPER

Combining patient-level and summary-level data for Alzheimer’s
disease modeling and simulation: a beta regression meta-analysis

James A. Rogers * Daniel Polhamus - William R. Gillespie -
Kaori Ito - Klaus Romero - Ruolun Qiu - Diane Stephenson -
Marc R. Gastonguay - Brian Corrigan

Objective:

Develop a model to describe the longitudinal progression of ADAS-cog
in Alzheimer’s disease patients in both natural history and randomized
clinical trial settings, utilizing both IPD and AD.




| Model-Based Projection of TPP for POC Decision

Target product response for change in typical ADAScog score at 6 months:

* must have -2.5 units
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I Discussion Points

e Are similar disease progression data sets / information
sources used in HEOR assessments?

e How else can a quantitative understanding of disease
progression be utilized in your decision making?




Drug Drug then Placebo

F Exploring POC Trial Design Performance

Placebo . . . . . .. Placebo then Drug
= Given quantitative criteria, explore decision
’ making performance under different =1—.
- assumptions about true drug characteristics. al U

i : +« & &+ » » Assuming drug reaches 50% of maximal effect at 4 weeks: ==,

12 Week Parallel Design 6 Week Cross-over Design
Decision Decision
Truth GO | NOGO Truth GO | NO GO
E®6)=2 | 0% | 100% E(6) =2 |10% | 90%
E(6)=45|92% | 8% E6)=45|92% | 8%

E(6) denotes placebo-adjusted drug effect at 6 months;
Table percentages based on 100 simulations

Polhamus D, Rogers J, Gillespie W, French J, and Gastonguay M. From Evidence Synthesis to Trial Optimization: The adsim Package for Model-base( 13
Simulation in Alzheimer’s Disease PAGE 21 June 2012 (http://metrumrg.com/assets/pubs/page 2012 _polhamus.pdf)



Indirect Comparative Efficacy

Open Access Research

BM] A novel model-based meta-analysis to
0pen indirectly estimate the comparative
- efficacy of two medications: an example
using DPP-4 inhibitors, sitagliptin and
linagliptin, in treatment of type 2
diabetes mellitus

Jorge Luiz Gross," James Rogers,? Daniel Polhamus,? William Gillespie,?
Christian Friedrich,® Yan Gong,* Brigitta Ursula Monz,* Sanjay Patel,®
Alexander Staab,? Silke Retlich®

Gross JL, Rogers J, Polhamus D, Gillespie W, Friedrich F, Gong Y, Monz BU, Patel S, Staab A, Retlich S. A novel
model-based meta-analysis to indirectly estimate the comparative efficacy of two medications: an example using
DPP-4 inhibitors, sitagliptin and linagliptin, in treatment of type 2 diabetes mellitus. BMJ Open 2013, 3:e001844.
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Figure 1 (A) Graphic representation of the components of
the final model, for study arms that included patients washing
out their prior antihyperglycaemic medication in the run-in
period. (B) Graphic representation of the components of the
final model, for study arms that included patients who were
treatment-naive or had completely washed out their prior
antihyperglycaemic medication before enrolment.
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Trial Summary Data: HbA1c Change from Baseline
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Study

Trial Summary Data: HbA1c Difference from Placebo
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Probability Distribution for Expected Response Difference
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Figure 4 (A) Estimated drug effects on glycated
haemoglobin (HbA1c) for reference population, with no
pretreatment washout, over 24 weeks (difference from
placebo). (B) Estimated drug effects on HbA1c for reference
population, with 4-week washout plus 2-week placebo run-in
period, over 24 weeks (difference from placebo). Reference
population of 1000 participants, baseline HbA1c: 8%, racial
composition: 61.5% White, 1.5% Black, 37% Asian.
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Figure 5 Posterior distribution for the difference in effect
estimates between linaglitpin (5 mg) and sitagliptin (100 mg)
at 24 weeks. Reference population of 1000 participants
(therefore involving 10° simulated patients), baseline glycated
haemoglobin (HbA1c): 8%, racial composition: 61.5% White,
1.5% Black, 37% Asian.



Impact on Health Technology Assessment

{‘ Healthcare Scottish N . , . o
( \ Improvement MEdICII'l_ES About us Medicines advice How we decide Making a submission
... Scotland Consortium

Home / Medicines advice / linagliptin (Trajenta)

AdV|Ce following a full submission:
linagliptin (Trajenta®) is accepted for restricted use within NHS Scotland.

Indication under review: the treatment of type 2 diabetes mellitus to improve glycaemic control in adults:

https://www.scottishmedicines.org.uk/medicines-advice/linagliptin-trajenta-fullsubmission-85013/



https://www.scottishmedicines.org.uk/medicines-advice/linagliptin-trajenta-fullsubmission-85013/

I Linking PMX and PE: Xanthine Oxidase Inh. & Gout

Individual-Level PKPD Modeling and Simulation
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Economic model (x 5,000 simulations)

Integration of Pharmacometrics and Pharmacoeconomics to Quantify the Value of Improved Forgiveness to Nonadherence: A Case Study of Novel Xanthine Oxidase Inhibitors for Gout.
Daniel Hill-McManus;Scott Marshall;Elena Soto;Dyfrig A Hughes ISSN: 0009-9236 , 1532-6535; DOI: 10.1002/cpt.1454. Clinical pharmacology & therapeutics : CPT. , 2019, Vol.106(3),
p.652-660




I Simulation: Response vs. Adherence

Mean treatment response rate (< 6 mg/dL)
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Integration of Pharmacometrics and Pharmacoeconomics to Quantify the Value of Improved Forgiveness to Nonadherence: A Case Study of Novel Xanthine Oxidase Inhibitors for Gout.
Daniel Hill-McManus;Scott Marshall;Elena Soto;Dyfrig A Hughes ISSN: 0009-9236 , 1532-6535; DOI: 10.1002/cpt.1454. Clinical pharmacology & therapeutics : CPT. , 2019, Vol.106(3),

p.652-660



I Simulation: Pricing vs Response

Estimation of possible hypothetical XOi pricing premiums relative to febuxostat 80 mg
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I Discussion Points

e How can a projection of expected pricing premium
impact early drug development decision making?

e In addition to strategies aimed at modifying the impact
of non-adherence, what other strategies are of interest
from an economic/outcomes point of view?




I Denosumab Pharmacoeconomic Analysis

JOURNAL OF MEDICAL ECONOMICS, 2018
VOL. 21, NO. 5, 525-536

https://doi.org/10.1080/13696998.2018.1445634 :
Article 0212-FT.R1/1445634 Taylor & Francis

All rights reserved: reproduction in whole or part not permitted Taylor &Francis Group

ORIGINAL RESEARCH W) Check for updates

A cost-effectiveness analysis of denosumab for the prevention of skeletal-related
events in patients with multiple myeloma in the United States of America

Noopur Raje?, Garson David Roodman®, Wolfgang Willenbacher®, Kazuyuki Shimizu®, Ramc_Sn Garcia-Sanz®,
Evangelos Terposf, Lisa Kennedy®, Lorenzo Sabatellih, Michele Intorcia™ and Guy Hechmati'
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Multi-Scale Systems Pharmacology Models
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Fracture Rate MSSP/Model-Based Meta Analysis
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I Fracture Hazard Ratio by Treatment
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Fig. 3 Hazard ratios for each treatment relative to placebo calculated and density plots for this calculation over the posterior distribution of
parameter estimates are represented, for the model with both drug-BMD interaction and additional drug effect

RJ Eudy-Byrne, W Gillespie, MM Riggs, MR Gastonguay. A model of fracture risk used to examine the link between bone mineral density and the impact of 27
different therapeutic mechanisms on fracture outcomes in patients with osteoporosis J Pharmacokinet Pharmacodyn (2017) 44:599-609



Linking MSSP/Fracture Model & Pharmacoeconomics

Quantitative Systems Pharmacology Modeling
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Figure 1. Depiction of model health states. 1L, first line; 2L+, second line or
later; Abbreviations. MM, multiple myeloma; OFF SRE Prev Tx, patients not
receiving treatment to prevent SREs; ON SRE Prev Tx, patients receiving treat-
ment to prevent SREs; SRE, skeletal-related event; Tx, treatment.

Early Development ICER
($/QALY) Predictions

e New drug, target

e New dose, regimen

e Combination therapies




| PMX and PE Model for Hypothetical COPD Drug

Model-Based Meta Analysis
VALUE IN HEALTH 19 (2016) 1026-1032 [ Trial&Patient ]

Characteristics

Available online at www.sciencedirect.com

ScienceDirect ﬂ

ELSEVIER journal homepage: www.elsevier.com/locate/jval MBMA Exacerbation MBMA Drug Effect on
Predictions FEV1/Exacerbations

Translating Pharmacometrics to a Pharmacoeconomic Model of
COPD

Stochastic Disease Progression ]
Julia F. Slejko, PhD™*, Richard J. Willke, PhD?, Jakob Ribbing, PhD>, Peter Milligan, PhD*

“A hypothetical anti-inflammatory drug that increased FEV1 by ﬂ
50 ml decreased exacerbations by 26%. Given a simplified i B Ao
estimation of costs and quality-adjusted life-years (QALYS) Economic Outcomes

associated with COPD, a drug with a 50-ml increase priced at g - )

. . . . Fig. 1 - Conceptual framework to incorporate MBMA into
€35/m0 had an Incremental COSt eﬁeCtlveneSS ratlo ranglng phannacoeconomic model. FEV1, forced expiratory volume
from €13,000/QALY to approximately €207,000/QALY across in 1 second; MBMA, model-based meta-analysis.

patient severity subgroups.”



Linking Methods to Extend Inferences

Panel A Panel B Panel C
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Fig. 3 - (A) Changes in mean exacerbations per treated subject vs. placebo, by scenario subgroup and expected drug effect. (B)
ICERs by scenario subgroup and expected drug effect. (C) Acceptability curves by scenario subgroup. COPD, chronic obstructive
pulmonary disease; ER, exacerbation rate; FEV,, forced expiratory volume in 1 second; ICER, incremental cost-effectiveness
ratio; ICS, inhaled corticosteroid; QALY, quality-adjusted life-year.



I Discussion Points

e The prior examples demonstrate the potential synergy
between commonly applied drug development
modeling and simulation methods (model based
meta-analysis, individual PK-PD, QSP) and
economic/outcomes assessments.

e \What are other opportunities to inform decision making
at the intersection of quantitative disciplines?




Do We Really Know What Lies Beneath the Surface?

http://timoelliott.com/blog/2013/06/the-ethics-of-big-data-vendors-should-take-a-stand.html



Do We Really Know What Lies Beneath the Surface?

New Insights & Better Decisions

http://timoelliott.com/blog/2013/06/the-ethics-of-big-data-vendors-should-take-a-stand.html



Do We Really Know What Lies Beneath the Surface?

New Insights & Better Decisions

Data Quality
Contracts, IP
New Skills & Infrastructure Development

Accuracy of Conclusions & Causal
Relationships

C g Opportunity Cost

http://timoelliott.com/blog/2013/06/the-ethics-of-big-data-vendors-should-take-a-stand.html




I Big Data: Correlation vs. Causation

“ A Scientists are trained to recognize that
s 7 correlation is not causation. Petabytes allow
. us to say: ‘Correlation is enough’.

. Chris Anderson, 2008
i 00 C : .ﬁ.@

b
559

In hiring decisions, what if algorithm predicts that males will be better
employees?

“Models that ignore causation can add to historical problems instead of
addressing them.”
R. Schutt & C. O'Neil.
Doing Data Science. 2013.

http://www.nytimes.com/2015/06/26/upshot/can-an-algorithm-hire-better-than-a-human.html
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« > 20 million posts between Oct.
27 and Nov. 1, 2012

« Study combined hurricane
Sandy-related Twitter and
Foursquare data

I BIG DATA is not e
BT

= - - 3
BPE. D

Conclusions:

» Grocery shopping peaked the night before the storm
» Nightlife picked up the day after the hurricane

Most tweets about Sandy came from Manhattan, very few messages originated
from Jersey shore.

http://photos.nj.com/star-ledger/2012/11/hurricane_sandy before_and_aft_7.html The Hidden Biases in Big Data. Kate Crawford. Harvard Business Review 36
https://hbr.org/2013/04/the-hidden-biases-in-big-data/


http://photos.nj.com/star-ledger/2012/11/hurricane_sandy_before_and_aft_7.html

I More Thoughts on Big Data

EDITORIAL

Big Data: Challenges and opportunities for
clinical pharmacology

British Journal of Clinical Br | Clin Pharmacol (2016) 81 804-806 804
Pharmacology

Received 29 January 2016; accepted 29 January 2016

David Flockhart’, Robert R. Bies?, Marc R. Gastonguay” and Sorell L. Schwartz*




Toujeo Real World Evidence Trial Simulation: Data Sources

Toujeo Phase lll trial data
(4 studies, ~26 Gb of SAS data)
[ ]

#iMas 4,681 patients over 4 trials

126,548 relevant lab records —
29,012 HgbAlc labs

MGH EMR Data

_omme 314,292 patients — ~ 65, 000 T2DM patients
T8 41917 patients with 22 long acting Insulin
outpatient prescriptions that are at least 30D
apart (life)

Slide courtesy of Jeffrey Barrett, ACoP 2017

GE Health EMR from Quintiles
(> 300 GB, ~2 billion records of structured data &
metadata)

[ ]
#@Mg+ ~ 3,000,000 patients
'A ~ 400,000 HgbA1c labs



The Big Picture =

MGH
Virtual patients from
EMR Data — 60 000
Diabetics patients

H

Toujeo and Lantus
Clinical Trial Data

Quintiles Electronic
Medical Record data

3.6 million patients

Slide courtesy of Jeffrey Barrett, ACoP 2017

Big Data
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[ RWE Simulator x@ James (.

€ > C { https:/i-e7be0648.metworx.com/envision/rwe_simulator/ ﬂ\’} BEOe =

RWE Simulator Data Sources Demographics Lantus/SOC  Toujeo Simulation Summary ~  Advanced

Population Specification Summary of Specified Population
Weight for each data source
BL>9 BL>9 BL<9 BL<9 Marginal
Edition3 % No SU su No SU su Total
(] B 10
M}“r S —— Target=7 20.7 13.8 16.8 1.2 62.5
o 1 2 3 4 5 6 7 8 9 10
Target=8 10.1 7.8 1.8 7.9 37.5
MGH Baseline HbA1c 8 to 11
g 5] 1 Marg. Tot. 30.8 21.6 28.6 19.1 100.0
O — )
o 1 2 3 4 5 6 7 8 9 10
MGH BL=9 BL=9 BL<9 BL<9
No SU
o B 10
—
o 1 2 3 4 5 6 7 8 9 10
i
@
Summary of relative weights 2
.—
0.001 .00
H
Population ‘a
B esions -
025 . MGH
[l VG Baseine HoATCB 1 11

050

Relative weighting of populations Slide courtesy of Jeffrey Barrett, ACoP 2017



[\ Dashboard %  (EJIRstudio - git-SANO101F %  [*) RWE Simulator x \ James

~ B a0 6 =

[l googlecode [itmp [ R [ metrumpublic [ rogerskatee@gmail.c » [_| Other Bookmarks

& (& \ ) https://i-e7be0648.metworx.com/envision/rwe_simulator/

i Apps W Bookmarks [ News [ ] metrum office [ ] generalref [..] comp ref stats

RWE Simulator Data Sources Demographics Lantus / SOC Toujeo Simulation Summary ~ Advanced

Probability of Success Difference in Composite Event Rates

Dashed line represents (Bayesian brior) meagn powe '
Solid line is fixed at 90% i

Current Scenario Statistics

Estimate
0.020 - (% )
0.20-
Toujeo Composite Endpoint 38.96
Rate
0.015-
e Lantus / SOC Composite 34.38
Endpoint Rate
§ 0.010- § idad Expected Treatment Difference 4.57
(U300-Comparator)
Average (Bayesian Predictive) 69.70
0.005- 0.05- Power
0.000 - 0.00- i
0 25 50 75 100 0 ;! EDITION 3
Power

0 4 8
Treatment difference (U300-Comparator) in Composite Endpoi

Save Scenario

Saved scenarios can be reviewed by toggling to
"Multi-scenario Summary" on the Navigation Bar
Slide courtesy of Jeffrey Barrett, ACoP 2017



I\ Dashboard % ()Rstudio - git-SANO101F % [} RWE Simulator x

| James |

€« (& ‘ ) https://i-e7be0648.metworx.com/envision/rwe_simulator/

RWE Simulator Data Sources Demographics Lantus / SOC Toujeo Simulation Summary ~

Probability of Success Difference in Composite Event Rates

Dashed line represents (Baye'sian prior) medn powe 0.3- ;
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Slide courtesy of Jeffrey Barrett, ACoP 2017
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Advanced

Current Scenario Statistics
Estimate
(%)
Toujeo Composite Endpoint 18.68
Rate
Lantus / SOC Composite 15.64
Endpoint Rate

Expected Treatment Difference 3.04
(U300-Comparator)

Average (Bayesian Predictive) 59.10
Power

MGH 8-11 with E3 Effect

Save Scenario

Saved scenarios can be reviewed by toggling to
"Multi-scenario Summary" on the Navigation Bar
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I Discussion Point

e How is big (unstructured) data used to inform decisions
in your domain?

e \What are opportunities to apply those learnings to other
drug development and market access decisions?




| Open Science in Pharmacometrics

se) Mrgsolve
CRAN PFIM ' RxODE
' subversion tid
R . gapply YYERE  imixr
GCC Wings for NONMEM Psi SASxport Shiny
19805 TATEX 419905 2000s 79 20105 Torstep 20205
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Parallel |, StMo7

dd ope .SP OPEN SYSTEMS
PHARMACOLOGY
Adapted from: Brian Corrigan, ACoP 2016.

Display may not be inclusive of all open source, public license software used in pharmacometrics.
Suggestions for additions welcome. Send software name, url, and license type to marcg@metrumrg.com. e °



IOpen Source Models in HEOR

PharmacoEconomics (2017) 35:125-128 @ CrossMark
DOI 10.1007/s40273-016-0479-8

RESEARCH LETTER

Benefits, Challenges and Potential Strategies of Open Source
Health Economic Models

William C. N. Dunlop’ - Nicola Mason? - James Kenworthy' + Ron L. Akehurst?

70% 8 u To‘apply the model in its existing form with minor changes
. 59% to inputs
60% . = To modify the model structure for a new decision problem
37% To be able to fully audit and check the model
40% —32%
30% m To use the model for teaching purposes
20% - m To learn technical aspects of the model for use in a different
10% 7% disease area or decision problem
(4] ;
| u Other
0%



Probability of Success: Outdated Thinking

vs. placebo

Density
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Probability of Success: Evolving Thinking

vs. active control
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Probability of Success: New Opportunity

Density

0.00 0.05 0.10 0.15 0.20

Effect Size

\  vs. future competitor

informed by predicted ICER

iIn Real World treatment
population

Continuously updated and
re-assessed as development
programs and standard of care
evolve



I Vision for Cross-Discipline Quantitative Platform
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I Discussion Points

e Are open models used in your work? Why or why not?

e How could a unified data & analytics platform improve
collaborations across disciplines?

e \What are the challenges related to implementing such
a system?




I Opportunities for Informed Decision-Making

COLLABORATION AT THE
INTERSECTION OF QUANTITATIVE
DISCIPLINES

MODEL-BASED DECISIONS
FORPOC, PHASE 2 TRIAL
SCENARIOS

COST EFFECTIVENESS:
IMPACT OF ADHERENCE
VIA PKPD

PROBABILITY OF RWE TRIAL
SUCCESS

LINKED PMX/HEOR
MODELS TO INFORM
DRUG DEVELOPMENT
DECISIONS

INDIRECT COMPARATIVE
EFFECTIVENESS

Page 51

OPEN MODELS FOR DISEASE AND
HEOR ASSESSMENT



