Improving Strategic Decision-Making with Early Prediction of Survival Outcomes in Oncology Clinical Trials

> Jonathan L. French, ScD Metrum Research Group

ACOP 11 - 10 November 2020

Collaborators

Merck & Co, Inc.	Metrum
Seth Robey	Ramon Garcia
Pavan Vaddady	Yoni Sidi
Lokesh Jain	

With thanks to the patients and investigators who participated in these clinical trials.

<u>All stakeholders:</u> get safe & effective treatments to patients quickly

Drug developers: stage investment of unpromising candidates

Use of modeling & simulation has grown substantially over the past 15 years

- Broad recognition of its utility (e.g., PDUFA VI)
- Impacting a variety of decisions (patient treatment, <u>drug</u> <u>development</u>, regulatory)

How do we leverage existing data to make decisions about new therapies?

Flow of proposed approach

Joint model for tumor size and overall survival

• Data from 4 clinical trials of Pembrolizumab in NSCLC (N > 2500)

RESEARCH GROUP

- Chemotherapy (N=720; 28%)
- Pembrolizumab (N=1324; 52%)
- Pembrolizumab + Chemotherapy (N=497; 20%)

Moore model¹ for asymptotic tumor growth: $TS_i(t) = TS_{0,i}(5TS_{max,i})(1 - e^{-k_{g,i}t}) + TS_{i,0}e^{-k_{d,i}t}$

Hazard function with cure fraction:

 $h_i(t|X_i) = a(X_i)e^{\beta * \log(RTS_i(t))}e^{-\lambda t}\lambda$

where $RTS(t) = \frac{TS(t)}{TS_0}$, a and λ are distributional parameters, and X_i is a vector of baseline predictive factors and effects.

1.Moore, H. A New Tumor Dynamics Mathematical Model. *American Conference on Pharmacometrics* (2016):Poster W–29.

Joint model provides good out-of-sample prediction of tumor dynamics and OS

RESEARCH GROUP

Modulation of individual TS parameters highlights dynamic impact on OS outcomes.

Survival

1.00

0.75

Depth Modulate

RTS

1.5

Difficult to predict how modulation of >1 parameter will impact OS.

Joint TGD-OS

Model

Moore model¹ for asymptotic tumor growth: $TS_{i}(t) = TS_{i,0}(5TS_{i,max})(1 - e^{-k_{i,g}t}) + TS_{i,0}e^{-k_{i,d}t}$

Hazard function with cure fraction: $h_i(t|X_i) = a(X_i)e^{\beta * \log(RTS_i(t))}e^{-\lambda t}\lambda$

Relationship

between

clinical metrics

Page 8

Multiple clinical measures could be used to describe tumor response

Effects on depth of response

- Difference in mean *best relative change* from baseline at t≤T.
- Difference in mean *relative change from baseline at t=T*.
- Difference in proportion of patients with best change from baseline at t≤T of ≤ 0, 10, 30, 50%.

Effects on durability of response

 Hazard ratio for <u>time-to-rebound</u> (20% growth from nadir; "tPFS").

T=[18, 27, 36, 45, 54, 63, 72] weeks

Page 9

Relationship

between

clinical metrics

Joint TGD-OS

Model

Prior distributions for new theoretical treatments

Using the reference model as a prior distribution for a new therapy, we constrain parameter space by the likely correlations between parameters observed previously

Derivation of Priors in THETA-space for simulation of novel therapies

	TS main effects	Other parameters
Chemo arm	Reference model standard error	Reference model standard error
New arm	Standard deviation = 1 "Pembro effect"	Reference model standard error

10

This gives ~16% probability that the novel therapy has an effect greater than Pembro.

Relationship

between

clinical

measures and

OS

Prior

distribution on

clinical

measures

OS is predicted to improve (HR<1 relative to chemo) when Kg and Tmax decrease, or Kd increases.

Converting THETA-space priors into clinical-space priors

Page 11

Modifying priors on clinical measures

Application of model to two hypothetical therapies

RESEARCH GROUP

Observed data at 18 weeks from randomly sampled data set of 20 patients/arm.

Tumor Metric Estimate

Application of model to two hypothetical therapies

Posterior

predictive

distribution

for OS HR

Observed clinical measures for new therapy

NVENTING FOR LIFF

Page 14

Prior distribution or

clinical

measures

80% power to predict survival benefit with summary data from 20 patients/arm at 18 weeks, even with very strong prior distribution.

1.00 0.75 Cumulative Probability comparison Cherno vs cherno 0.50 Combo vs chemo Prior 0.25 **Combination therapy vs chemotherapy** Chemotherapy vs chemotherapy (Negative control) 0.00 -0.5 2.0 1.0 Overall Survival HR **IERCK** RESEARCH GROUP

Conclusions

- M&S enables integration of information across a spectrum of clinical observations
- In non-linear models, prior distributions in parameter space don't result in normal priors in clinical space
- Importance sampling can be used to generate multi-dimensional normal priors.
- Summary level data from a small cohort of patients can be leveraged to simulate expected clinical benefit.
- Further work:
 - Use likelihood profiles to dissect the specific contribution of each metric to OS
 - Understand how the likelihoods of each TS metric change over time
 - Apply this approach in comparator analysis setting with summary level data from literature.

