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ABSTRACT

Purpose: To analyze ordered categorical data via
Bayesian methods and compare performance to that
of NONMEM with respect to prediction and
parameter estimation.
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Methods: Hypothetical ordered categorical data from
dose-response trials were simulated using cumulative
logit models. Each trial was a parallel design with 4

dose arms (0, 7.5, 15, 30), 250 patients/arm and 4
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observations/patient (incl. baseline). Each datum was
a 4 level ordered categorical score (0, 1, 2, or 3).
Three cases were simulated (100 replicates each): (1)
non-skewed, low inter-individual variance (11V); (2)
skewed, low 11V; (3) skewed, high I1V. Bayesian and
NONMEM implementations of a cumulative logit
model were used to analyze the data. Bayesian
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simulation implemented in OpenBUGS. NONMEM

used the Laplacian approximation.
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Results: The results confirmed previous reports of T

highest dose
case 2

bias and imprecision in NONMEM parameter case 1 .
estimates that increased with increasing 11V and ﬂ é .22
skewness. MCMC estimated posterior means showed 0.85
minimal bias for all 3 cases. When 11V was large, lacebo aEg
biased NONMEM parameter estimates caused i
overestimation of rare event rates. MCMC estimated
posterior expected rates showed minimal bias.
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Conclusions: Bayesian analysis of repeated ordered — = |1.00 ke 1.00 | pm
categorical data using MCMC results in more 1 . E g ] §§3 I
accurate and precise parameter estimates and ool oac |
predictions than the NONMEM Laplacian method < &
when the true model is skewed and 11V is large. b 3
Other advantages and disadvantages of Bayesian
modeling are discussed. A major disadvantage is the
lack of Bayesian modeling software with a library of
built-in PK & PD models. An effort is proposed to
address that limitation.
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PURPOSE

« To implement cumulative logit models for ordered categorical data
using OpenBUGS plus R tools.

» To compare performance of OpenBUGS and NONMEM with respect
to prediction and parameter estimation.

 To discuss limitations of available Bayesian modeling tools for
clinical pharmacology applications.

» To propose efforts to address some of those limitations

CONTEXT & MOTIVATION

Kjellsson MC,t Jénsson S,! and Karlsson MO.! The Back-Step Method—
Method for Obtaining Unbiased Population Parameter Estimates
for Ordered Categorical Data. AAPS J. 2004 Aug 11;6(3):e19.

Jonsson S,! Kjellsson MC,! and Karlsson MO.! Estimating Bias in
Population Parameters for Some Models for Repeated Measures
Ordinal Data using NONMEM and NLMIXED. J Pharmacokinet

Pharmacodyn. 2004 Aug;31(4):299-320.
1Division of Pharmacokinetics and Drug Therapy, Dept. of Pharmaceutical Biosciences,
Uppsala University, Box 591, SE-751 24 Uppsala, Sweden

Kjellsson, Jénsson & Karlsson simulation exercises:
 Ordered categorical responses (4 levels)
« NONMEM Laplacian method results in estimation and prediction biases
« Particularly when the data are skewed to one extreme and/or inter-
individual variation (11V) is large
* Probabilities of rare events are overestimated
« lllustrated 2 approaches for reducing that bias:
« The back step method, an iterative application of NONMEM
« A Gaussian quadrature method (NLMIXED in SAS)
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CONTEXT & MOTIVATION (cont.)

Bayesian modeling using Markov chain
Monte Carlo (MCMC) simulation

*Provides results in the form of samples from the joint posterior
distribution of the model parameters

« Should not produce the same biases as the Laplacian approximation

» The work presented here tests that expectation by applying MCMC to the
same simulated cases as Kjellson et al

METHODS
* Trial simulations performed using R
»Same model & parameter values as Kjellsson et al
* Trial design:

*4 dose arms: 0, 7.5, 15, 30

* 250 patients per arm

* 4 observations per patient (baseline + 3)
«100 trial replicates per scenario

Model used for simulation and analysis
The score (0, 1, 2 or 3) at the ith occasion in the jth individual (Yij) is
described by:

logit (Pr (Y;; = m|f,w)) ~ N (ﬂm’ij,w‘z)

fimyis = 9 Ok + Ity 50 (B4 + 05D;)

k=1
Parameter values
Case 01 62 03 04 05
1 1.85 -1.85 -1.85 0.483 0.046 4
2 -4.88 -0.548 -1.18 1.55 0.03 4
3 -11.8 -1.32 -2.96 3.85 0.717 40
Expected fraction of baseline scores
Case 0 1 2 3
1 0.24 0.26 0.26 0.24
2 0.965 0.0122  0.0144  0.0084
3 0.965 0.0122 0.0144  0.0084

OpenBUGS implementation
« Simulated trials analyzed using OpenBUGS + BRugs (R interface to
OpenBUGS)
* Model identical to that used for simulation except for presence of prior
distributions
« Relatively uninformative priors
* MCMC settings:
3 chains
«Burn-in for 4001 samples/chain
5010 post-burn-in samples/chain (keep every 15th)

relative bias

relative root mean square error

; logits for cumulative probabilities

; cumulative probabilities

; probabilities for each score (likelihood)

; indicators for each score

; likelihood

$SESTIMATION MAX=9999 PRINT=1 METHOD=COND LAPLACE LIKE NOABORT

NONMEM Model BUGS model

$PRED Imodel{

; indicator for post-baseline data for(i in l:npat){

IPOST = 0

IF (TIME .GT. 0) IPOST = 1 # interpatient variability
eta[i] ~ dnorm(0,tau.eta)

; treatment effect

ETREAT = IPOST*(THETA(4) + THETA(S5)*DOSE) i

for(i in l:nobs){
LPCUM1 = THETA(1) + ETREAT + EXP(THETA(6))*ETA(1) ; SCORE >= 1
LPCUM2 = LPCUM1 - EXP(THETA(2)) ; SCORE >= 2
LPCUM3 = LPCUM2 - EXP(THETA(3)) ; SCORE >= 3

# likelihood for observed score
score[i] ~ dcat(p[i,1:4])

# probabilities for each score
PCUM1 = (1/(1+EXP(-LPCUM1))) pli,1] <= 1 - pcum[i,1]

PCUM2 = (1/(1+EXP(-LPCUM2)))
PCUM3 = (1/(1+EXP(-LPCUM3)))

pli,2] <- peum[i,1]
pli,3] <- peum[i,2]
pli, 4] <- pcum[i,3]

- peum[i,2]
- peum[i,3]

# treatment effect model & calculation of cumulative

# probabilities

logit(pcum[i,1]) <- theta[l] + (theta[4] +
theta[5]*dose[i])*(l-equals(time[i],0)) +
eta[patient[i]]

logit(pcum[i,2]) <- logit(pcum[i,1]) + theta[2]

10=0 logit(pcum[i,3]) <- logit(pcum[i,2]) + theta[3]

11=0

12=0 i

13=0

IF (DV.EQ.0) I0=1

PO = 1 - PCUML

Pl = PCUM1 - PCUM2
P2 = PCUM2 - PCUM3
P3 = PCUM3

# prior distributions

theta[1] ~ dnorm(0,0.00001)
theta[2] ~ dnorm(-1,0.00001)I(,0)
theta[3] ~ dnorm(-1,0.00001)I(,0)
theta[4] ~ dnorm(0,0.00001)
theta[5] ~ dnorm(0,0.00001)
sigma.eta ~ dunif(0,1000)

tau.eta <- 1/(sigma.eta*sigma.eta)

IF (DV.EQ.1) T1=1
IF (DV.EQ.2) I2=1
IF (DV.EQ.3) I3=1

Y = PO*I0 + P1*I1 + P2*I2 + P3*I3

i

RESULTS

Relative bias in parameter estimates
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Predicted fractions of responses by score
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Copies of this poster are available at: www.metruminstitute.org/publications/index.shtml

BAYESIAN APPROACHES TO MIXED EFFECTS MODELS FOR ORDERED CATEGORICAL DATA
W.R. Gillespie, PhD, M.R. Gastonguay, PhD, W. Knebel, PhD, Metrum Institute, Tariffville, CT 06081

DISCUSSION/CONCLUSIONS

The case for Bayesian modeling of ordinal data using
MCMC

* Better estimation and prediction performance than methods using linear or
Laplacian approximation to the likelihood
* Yields an estimate of the entire joint posterior distribution of the model
parameters
¢ Describes uncertainty in parameters
« Uncertainty in derived quantities, e.g., predictions, is easily calculated
from MCMC samples
« Can easily and rigorously include prior information
* Available tools, e.g., WinBUGS/OpenBUGS, permit very flexible model
specification:
« Rich collection of built-in probability distributions
« No limit on levels of variability

The case against Bayesian modeling of ordinal data
using MCMC

* Requires more computation time
e ~15-45 minutes per trial (elapsed time with Intel Core Duo 2.33 GHz, 2
GB RAM)
« Limited benefit from parallel computation
¢ Though substantial gains are possible by running multiple chains in
parallel
« NONMEM requires substantially less time to obtain point estimates
* SAS NLMIXED using Gaussian quadrature is also faster
< But if you want rigorous characterization of uncertainty with ML
methods:
« Bootstrapping is probably the best option
« And that also requires sizable computation time
< Butit is readily accelerated via parallel computation

Primary limitation of existing Bayesian software for
clinical pharmacology applications

* Lack of built-in PK & PD models
¢ PKBugs limited to linear compartmental models with - 3 compartments
¢ Also not available for OpenBUGS or latest version of WinBUGS
 Support for ODEs available (WBDIFF & MCSim) but substantial
programming needed to apply it to multiple dose data
« In short, no real equivalent to PREDPP

Metrum Institute efforts to address limitations &
facilitate use of Bayesian methods in pharmacometrics

» Develop computational methods and open-source software tools for Bayesian
modeling and simulation relevant to pharmacometric applications
« Short term efforts
¢ Currently developing a PREDPP equivalent for WinBUGS and
OpenBUGS
« Develop tools for distributed computing of multiple chains
« Working prototype using MPICH2 and R with a modified
version of R2WinBUGS
« Tentative long-term plans:
« Develop a more comprehensive platform for Bayesian M&S
* Implement both MCMC and estimation of posterior modes.
« Efficient estimation of posterior modes would facilitate rapid
exploratory modeling
« Open source with greater platform (s/w & h/w) independence
 Support for parallel computing
« Suite of tools for analysis of MCMC samples
» Probably structured as one or more R packages
* Provide short courses in Bayesian modeling for pharmacometric applications



