# ESTIMATION AND PREDICTION OF CHAOTIC PHARMACODYNAMIC SYSTEMS USING NONLINEAR MIXED-EFFECTS MODELS: THE BUTTERFLY EFFECT

Marc R. Gastonguay<sup>1</sup>, Robert R. Bies<sup>2</sup>
Metrum Research Group LLC<sup>1</sup>, Avon, CT 06001
University of Pittsburgh School of Pharmacy<sup>2</sup>, Pittsburgh, PA 15261

#### Introduction

- Improvements in signal measurement and data collection have opened the possibility for quantitative modeling of oscillatory and chaotic physiologic systems in pharmacodynamics (PD).
- Chaotic physiologic endpoints include continuous measurements of EEG, ECG, respiratory and cardiovascular endpoints, for example.
- Typically, PD models of these types of data treat deterministic physiologic oscillations as random noise.
- Alternatively, physiologic oscillatory data could be modeled using chaotic dynamic models.

# **Objectives**

- To explore mechanisms for incorporating chaotic dynamics in PK-PD models
- To simulate a hypothetical drug effect on a chaotic dynamic system
- To investigate the impact of adding random residual variability (VAR) to the chaotic pharmacodynamic model simulations
- To evaluate the estimation performance of nonlinear mixed effects models when applied to chaotic dynamic systems/models under varying magnitudes of VAR

# The Chaotic Dynamic Model

• The quadratic map (Equation 1) was used as a general example of a nonlinear (chaotic) finite-difference equation.

$$X_{t} = R \cdot X_{t-1} \cdot (1-X_{t-1})$$
 Eq. 1

where:

X<sub>t</sub> is the PD observation for the current cycle in a series of observations (e.g. QT interval for current heart-beat)

 $X_{t-1}$  is the PD observation for the immediately preceding cycle (e.g. QT interval for previous heart-beat)

R is a model parameter, which may be a function of other covariates, such as drug concentration

### **Simulation Methods**

- A hypothetical drug concentration-time relationship was simulated (without variability) using a one-compartment model with first-order absorption and elimination.
- The parameter R in the finite-difference equation was assumed to be directly proportional to plasma drug concentration.
- One individual's PK-PD data were simulated for 1000 cycles (e.g. heart beats) without & with different levels of residual noise:  $\varepsilon_t \sim N(0, \sigma^2)$ .
- Data were simulated using a recursive prediction routine (ADVAN5) in the NONMEM software.

#### **Estimation Methods**

- For each simulation replicate/scenario, individual data were analyzed assuming that the PK-PD model was known (same as simulation model).
- Parameters for the one-compartment PK model were assumed to be known and were fixed to previously determined estimates.
- Parameters of the finite-difference PD model were estimated using NONMEM, and estimation bias was expressed as mean percent prediction error (%MPE).

#### **Simulation Results**

- A chaotic dynamic system was simulated, which resulted in the characteristic deterministic pattern on a return map plot (Figure 1, right panel). This is in contrast to a completely random system (Figure 1, left panel).
- Simulated PD data revealed a chaotic dynamic pattern, which was related to increasing drug concentration (Figure 2).

# Figure 1: Return Map for Random vs. Chaotic Dynamic Systems



8

# Figure 2: Simulated Data Without Noise

chaotic state (e.g. arrhythmia)





# **Estimation Results: Model Fit**

- Plots of observed (+), predicted (o) & the true system
  ( ) data vs. cycle number are presented as goodness of fit diagnostics (Figures 3 7).
- A drug effect model was necessary to describe the chaotic dynamic system.
- The predicted response was generally in good agreement with the underlying system data at low to moderate levels of residual variability ( $\sigma^2 \le 0.01$ ), but the PD system behavior was lost in both the observed and predicted response when measurement noise was large ( $\sigma^2 = 0.1$ ).

# Figure 3: No Drug Effect ( $\sigma^2 = 0$ )



# Figure 4: PD Model Fit $(\sigma^2 = 0)$



# Figure 5: PD Model Fit ( $\sigma^2 = 0.001$ )



Copyright 2004 **metrum** research group LLC

# Figure 6: PD Model Fit ( $\sigma^2 = 0.01$ )



# Figure 7: PD Model Fit ( $\sigma^2 = 0.1$ )



Copyright 2004 **metrum** research group LLC

#### **Estimation Results**

• Estimates of the fixed effect PD parameter were relatively accurate, with bias increasing as VAR increased.

• Because of the strong sensitivity to initial conditions, even moderate bias (~17%) in parameter estimation led to poor predictions of the chaotic system response over time, as indicated by diagnostic plots (Figure 7).

#### **Table 1. Estimation Results**

| DESCRIPTION                                | SIM THETA | <b>EST THETA</b> | BIAS (%MPE) | SIM SIGMA | EST SIGMA | BIAS (%MPE) |
|--------------------------------------------|-----------|------------------|-------------|-----------|-----------|-------------|
| ESTIMATE W DRUG; SIM SIGMA=0 (SD=0)        | 3.90      | 3.87             | -0.9        | 0.000     | 0.003     | N/A         |
| ESTIMATE W/O DRUG; SIM SIGMA=0 (SD=0)      | 3.90      | 2.67             | -31.6       | 0.000     | 0.026     | N/A         |
| ESTIMATE W DRUG; SIM SIGMA=0.001 (SD=0.032 | 3.90      | 3.78             | -3.0        | 0.001     | 0.007     | 639.6       |
| ESTIMATE W DRUG; SIM SIGMA=0.01 (SD=0.1)   | 3.90      | 3.80             | -2.6        | 0.010     | 0.018     | 82.2        |
| ESTIMATE W DRUG; SIM SIGMA=0.05 (SD=0.251) | 3.90      | 3.80             | -2.6        | 0.063     | 0.069     | 9.2         |
| ESTIMATE W DRUG; SIM SIGMA=0.076 (SD=0.276 | 3.90      | 3.87             | -0.7        | 0.076     | 0.090     | 17.9        |
| ESTIMATE W DRUG; SIM SIGMA=0.09 (SD=0.3)   | 3.90      | 3.83             | -1.8        | 0.090     | 0.100     | 11.6        |
| ESTIMATE W DRUG; SIM SIGMA=0.1 (SD=0.316)  | 3.90      | 3.22             | -17.5       | 0.100     | 0.127     | 26.7        |

#### where:

- SIM = simulation value, EST = estimation value
- THETA is the fixed effect parameter describing drug effect on R
- SIGMA is the variance of random residual noise ( $\sigma^2$ )
- Results are the average across 100 simulation & estimation replicates

### **Conclusions**

- Simulation and parameter estimation for nonlinear finite-difference models can be accomplished using standard PK-PD modeling software.
- Accuracy of PD parameter estimation was dependent upon the level of measurement noise.
- Predictive performance for chaotic dynamic models is highly sensitive to estimation accuracy of PD model parameters (the so-called butterfly effect).

#### **Discussion**

- This example is purely an illustration; the finite-difference PD model for QT-interval prolongation or other chaotic dynamic endpoints is unknown.
- Even when the model structure is known, accurate estimation and prediction for chaotic dynamic systems in PK-PD models may be difficult at typically observed levels of process and measurement variability.

## **NMTRAN Control Stream**

| \$PROBLEM 003, ESTIMATE      | \$ERROR                      |
|------------------------------|------------------------------|
| CHAOTIC PKPD IND DATA        | CP=A(2)/S2                   |
| \$INPUT NOID TIME DV AMT CMT | RPAR=SCL*CP                  |
| \$DATA INPUT4.TAB IGNORE=@   | X=RPAR*XLST*(1-XLST)         |
| \$SUB ADVAN5 TRANS1          | Y = X + ERR(1)               |
| INFN=RUNLOG.FOR              | PRVX=XLST                    |
| \$MODEL                      | XLST=X                       |
| COMP=(DEPOT)                 | CNT=TIME                     |
| COMP=(CENTRAL)               | ID=NOID                      |
| \$PK                         | \$THETA ;PK MODEL FIXED      |
| IF(NEWIND.EQ.0) XLST=0.1     | (0.05  FIX); K12             |
| K12=THETA(1)                 | (0.0005 FIX) ;K20            |
| K20=THETA(2)                 | (0,2);SCL                    |
| SCL=THETA(3)                 | \$OMEGA 0.00001              |
| S2=1                         | <b>\$ESTIMATION MAX=9999</b> |
|                              | \$TABLE CNT RPAR X PRVX      |
|                              | CMTCP EVID ID TIME           |

#### References

- Abdullaev SS. Classical chaos and nonlinear dynamics of rays in inhomogeneous media. Chaos 1991; 1(2):212-219.
- Ashwin P. Nonlinear dynamics: Synchronization from chaos. Nature 2003; 422(6930):384-385.
  - Cotton P. Chaos, other nonlinear dynamics research may have answers, applications for clinical medicine. JAMA 1991; 266(1):12-18.
- Denton TA, Diamond GA, Helfant RH, Khan S, Karagueuzian H. Fascinating rhythm: a primer on chaos theory and its application to cardiology. Am Heart J 1990; 120(6 Pt 1):1419-1440.
- Dokoumetzidis A, Iliadis A, Macheras P. Nonlinear dynamics and chaos theory: concepts and applications relevant to pharmacodynamics. Pharm Res 2001; 18(4):415-426.
- Faure P, Korn H. Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. C R Acad Sci III 2001; 324(9):773-793.
- Garfinkel A, Spano ML, Ditto WL, Weiss JN. Controlling cardiac chaos. Science 1992; 257(5074):1230-1235.
- Goldberger AL. Nonlinear dynamics, fractals and chaos: applications to cardiac electrophysiology. Ann Biomed Eng 1990; 18(2):195-198.
- Grenfell BT, Kleczkowski A, Gilligan CA, Bolker BM. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases. Stat Methods Med Res 1995; 4(2):160-183.

  Copyright 2004 metrum research group LLC

# References (continued)

- Lanza ML. Nonlinear dynamics: chaos and catastrophe theory. J Nurs Care Qual 2000; 15(1):55-65.
- Mackey MC, Glass L. Oscillation and chaos in physiological control systems. Science 1977; 197(4300):287-289.
- Nonlinear dynamics and chaos in astrophysics: A festschrift in honor of George Contopoulos. Proceedings of the thirteenth conference of the series Florida Workshops in Nonlinear Astronomy. February 12-14, 1998. Gainesville, Florida, USA. Ann N Y Acad Sci 1998; 867:1-335.
- Philippe P. MZ twinning: chance or determinism? An essay in nonlinear dynamics (chaos). Ann Hum Biol 1994; 21(5):423-434.
- Sedivy R, Thurner S, Kastner J, Maurer G. [Nonlinear dynamics, chaos theory and wavelet analysis of the heart]. Wien Klin Wochenschr 2000; 112(4):177-183.
- Skinner JE, Wolf SG, Kresh JY, Izrailtyan I, Armour JA, Huang MH. Application of chaos theory to a model biological system: evidence of self-organization in the intrinsic cardiac nervous system. Integr Physiol Behav Sci 1996; 31(2):122-146.

For copies of this poster, please visit www.metrumrg.com