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Introduction

Improvements in signal measurement and data
collection have opened the possibility for quantitative
modeling of oscillatory and chaotic physiologic systems
In pharmacodynamics (PD).

Chaotic physiologic endpoints include continuous
measurements of EEG, ECG, respiratory and
cardiovascular endpoints, for example.

Typically, PD models of these types of data treat
deterministic physiologic oscillations as random noise.

Alternatively, physiologic oscillatory data could be
modeled using chaotic dynamic models.
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Objectives

To explore mechanisms for incorporating chaotic
dynamics in PK-PD models

To simulate a hypothetical drug effect on a chaotic
dynamic system

To Investigate the impact of adding random residual
variability (VAR) to the chaotic pharmacodynamic
model simulations

To evaluate the estimation performance of nonlinear
mixed effects models when applied to chaotic dynamic
systems/models under varying magnitudes of VAR
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The Chaotic Dynamic Model

e The quadratic map (Equation 1) was used as a general
example of a nonlinear (chaotic) finite-difference
equation.

X = R Xy (1-Xi4) Eq. 1

where:

X, Is the PD observation for the current cycle in a series
of observations (e.g. QT interval for current heart-beat)

X1 Is the PD observation for the immediately preceding
cycle (e.g. QT interval for previous heart-beat)

R 1s a model parameter, which may be a function of other
covariates, such as drug concentration

4

Copyright 2004 metru M research group Lc



Simulation Methods

A hypothetical drug concentration-time relationship was
simulated (without variability) using a one-compartment
model with first-order absorption and elimination.

The parameter R In the finite-difference equation was
assumed to be directly proportional to plasma drug
concentration.

One individual’s PK-PD data were simulated for 1000
cycles (e.g. heart beats) without & with different levels of
residual noise: g, ~N(0,c?).

Data were simulated using a recursive prediction routine
(ADVANS) in the NONMEM software.
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Estimation Methods

 For each simulation replicate/scenario, individual data
were analyzed assuming that the PK-PD model was
known (same as simulation model).

« Parameters for the one-compartment PK model were
assumed to be known and were fixed to previously
determined estimates.

o Parameters of the finite-difference PD model were
estimated using NONMEM, and estimation bias was
expressed as mean percent prediction error (%oMPE).
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Simulation Results

A chaotic dynamic system was simulated, which
resulted in the characteristic deterministic pattern on a
return map plot (Figure 1, right panel). This is In
contrast to a completely random system (Figure 1, left
panel).

o Simulated PD data revealed a chaotic dynamic pattern,
which was related to increasing drug concentration
(Figure 2).
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Figure 1: Return Map for Random
vs. Chaotic Dynamic Systems
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Figure 2: Simulated Data Without Noise
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Estimation Results: Model Fit

 Plots of observed (+), predicted (0) & the true system
( ) data vs. cycle number are presented as goodness of
fit diagnostics (Figures 3 — 7).

A drug effect model was necessary to describe the
chaotic dynamic system.

* The predicted response was generally in good
agreement with the underlying system data at low to
moderate levels of residual variability (o2 <0.01), but
the PD system behavior was lost in both the observed
and predicted response when measurement noise was
large (o2 =0.1).
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Figure 3: No Drug Effect (6% = 0)
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Figure 4: PD Model Fit (c2 = 0)
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Figure 5: PD Model Fit (c2 = 0.001)
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Figure 6: PD Model Fit (o2 = 0.01)
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Figure 7: PD Model Fit (6% =0.1)
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Estimation Results

« Estimates of the fixed effect PD parameter were
relatively accurate, with bias increasing as VAR
Increased.

« Because of the strong sensitivity to initial conditions,
even moderate bias (~17%) in parameter estimation led
to poor predictions of the chaotic system response over
time, as indicated by diagnostic plots (Figure 7).

16
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Table 1. Estimation Results

DESCRIPTION SIM THETA EST THETA BIAS (%MPE) SIM SIGMA EST SIGMA BIAS (%MPE)
ESTIMATE W DRUG; SIM SIGMA=0 (SD=0) 3.90 3.87 -0.9 0.000 0.003 N/A
ESTIMATE W/O DRUG; SIM SIGMA=0 (SD=0) 3.90 2.67 -31.6 0.000 0.026 N/A
ESTIMATE W DRUG; SIM SIGMA=0.001 (SD=0.032 3.90 3.78 -3.0 0.001 0.007 639.6
ESTIMATE W DRUG; SIM SIGMA=0.01 (SD=0.1) 3.90 3.80 -2.6 0.010 0.018 82.2
ESTIMATE W DRUG; SIM SIGMA=0.05 (SD=0.251) 3.90 3.80 -2.6 0.063 0.069 9.2
ESTIMATE W DRUG; SIM SIGMA=0.076 (SD=0.276 3.90 3.87 -0.7 0.076 0.090 17.9
ESTIMATE W DRUG; SIM SIGMA=0.09 (SD=0.3) 3.90 3.83 -1.8 0.090 0.100 11.6
ESTIMATE W DRUG; SIM SIGMA=0.1 (SD=0.316) 3.90 3.22 -17.5 0.100 0.127 26.7
where:

e SIM = simulation value, EST = estimation value

« THETA is the fixed effect parameter describing drug
effecton R

* SIGMA is the variance of random residual noise (c?)

e Results are the average across 100 simulation &
estimation replicates
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Conclusions

« Simulation and parameter estimation for nonlinear
finite-difference models can be accomplished using
standard PK-PD modeling software.

» Accuracy of PD parameter estimation was dependent
upon the level of measurement noise.

 Predictive performance for chaotic dynamic models is
nighly sensitive to estimation accuracy of PD model
parameters (the so-called butterfly effect).

18
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Discussion

e This example is purely an illustration; the finite-
difference PD model for QT-interval prolongation or
other chaotic dynamic endpoints Is unknown.

e Even when the model structure is known, accurate
estimation and prediction for chaotic dynamic systems
In PK-PD models may be difficult at typically observed
levels of process and measurement variability.

19

Copyright 2004 metru M research group Lc



NMTRAN Control Stream

$PROBLEM 003, ESTIMATE $ERROR
CHAOTIC PKPD IND DATA CP=A(2)/S2
$INPUT NOID TIME DV AMT CMT  RPAR=SCL*CP
$DATA INPUT4.TAB IGNORE=@ X=RPAR*XLST*(1-XLST)
$SUB ADVAN5 TRANS1 Y = X + ERR(1)
INFN=RUNLOG.FOR PRVX=XLST
$MODEL XLST=X
COMP=(DEPOT) CNT=TIME
COMP=(CENTRAL) ID=NOID
$PK $THETA :PK MODEL FIXED
IF(NEWIND.EQ.0) XLST=0.1 (0.05 FIX) ;K12
K12=THETA(1) (0.0005 FIX) ;K20
K20=THETA(2) (0,2) :SCL
SCL=THETA(3) $OMEGA 0.00001
S2=1 $ESTIMATION MAX=9999
$TABLE CNT RPAR X PRVX
CMTCP EVID ID TIME ... 2
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