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Background

Nonlinear elimination is a common characteristic of the pharmacokinetics (PK) of therapeu-
tic monoclonal antibodies (mAbs), and accordingly, PK models with nonlinear elimination have
been used in almost half of the population PK analyses of therapeutic mAbs published in the sci-
entific literature to date [1]. Difficulties detecting and characterizing this nonlinear PK have been
reported in a number of population PK analyses of therapeutic mAbs [1]. The challenge with
detecting and characterizing this nonlinear PK is not only dependent on the study design, but
also on the estimation method used for the population PK analysis [2]. However, little work has
been done so far evaluating population estimation methods using PK models that are represen-
tative of the typical disposition characteristics of therapeutic mAbs, as most method comparison
studies used a one-compartment model with linear elimination for comparison [3, 4, 5, 6, 7, 8].

Objective

• To compare the parameter estimation performance of the first-order conditional estimation
and Laplacian methods with interaction (FOCE-I and LAP-I) in NONMEM (version VI) and
a Bayesian Markov Chain Monte Carlo (MCMC) method in WinBUGS (version 1.4.3) with
BUGSModelLibrary [9] for population PK modeling of therapeutic mAbs with nonlinear elim-
ination.

• To explore the impact of study design on estimation performance.

• To evaluate the sensitivity of conclusions to uncertainty in simulation model parameters.

Methods

Figure 1: Overview of the methodology of the simulation and estimation steps

Sampled 1000 values from each simulation parameter uncertainty distribution 

Combined sampled values to create 1000 full sets of simulation parameter values for the population PK model 

Table of Simulation Parameter Values 

Each row represents 1 full set of simulation parameter values 

Each set of simulation parameter values was used to simulate 1 replicate data set 

under a given study design template (n=number of replicates simulated) 

Obtained parameter estimates for each replicate data set using the following estimation 

methods: FOCE-I, LAP-I, and Bayesian MCMC with informative and vague priors 

Uninformative 600 mg Study Design (n=1000) Informative Study Design (n=1000) 

Population PK Model
For purposes of this study it was assumed that the theoretical mAb was of the human IgG1
type that targets a cell membrane receptor primarily expressed in tissue and is indicated in
the area of oncology. Published findings from population PK analyses of therapeutic mAbs
and their general PK behavior were used to define the population PK model in terms of model
structure and fixed and random effect parameters [1]. The structural PK model used for the
simulation/estimation steps was a two-compartment model with parallel linear and nonlinear
elimination from the central compartment. Between-subject variability was included in the pa-
rameters Vmax, CLL, V1, and V2, and was modeled using an exponential error. Body weight
(kg) was considered to be a predictor of Vmax, CLL, V1, and V2, and was modeled using a
power model (with weight normalized). Residual variability was modeled using an exponential
error.

Clinical Study Designs
Replicate data sets were simulated under two different study designs typically encountered dur-
ing drug development: a dose-ranging design (‘informative design’) and a single dose level
design (‘uninformative design’). The study templates were designed to be representative of
phase I/II studies included in published population PK analyses of therapeutic mAbs. In the
informative design there were six dose groups with six patients per group. The mAb was admin-
istered weekly for 4 weeks as a 1 hr IV infusion at doses of 50, 100, 200, 400, 800, or 1600 mg,
resulting in concentration ranges below and above the Km. Peak and trough mAb concentra-
tions were obtained at weeks 2 and 3, and on weeks 1 and 4 a full PK concentration-time profile
was obtained with concentrations sampled at 1, 3, 6, 10, 24, 48, 72, 96, and 168 hours after
the start of the infusion. In the uninformative design there were 36 patients and all were treated
at the 600 mg dose level, resulting in concentrations generally above the Km, thereby making it
more difficult to detect and characterize the nonlinear elimination of the therapeutic mAb. The
dosing and sampling schedules in the uninformative design were the same as in the informative
design except for the full PK concentration-time profile at week 1 which was removed.

Simulation Parameter Uncertainty Distributions
Simulation of the replicate data sets was performed with uncertainty included simultaneously
on all parameters in the population PK model. Given that the population PK characteristics
of therapeutic mAbs are quite similar [1], the published findings from over 20 population PK
analyses were used to define the simulation parameter prior (uncertainty) distributions. All pop-
ulation PK analyses that used a two-compartment model were considered in defining the distri-
butions regardless of the clearance model used, but the focus was on analyses where nonlinear
elimination of the mAb was modeled. Either lognormal (univariate or multivariate) or uniform
distributions were used for all parameters. Patient weights were simulated simultaneously with
concentration data for each replicate data set, and were assumed to follow a lognormal distribu-
tion with a variance of 0.04 and a mean weight randomly sampled from a specified uncertainty
distribution.

Table 1: Simulation parameter prior (uncertainty) distributions

Fixed Effects

ln(Vmax) ∼ N [ln(18.0 mg/day), 0.01]

ln(Km) ∼ N [ln(5.0 mg/L), 0.01]

ln(CLL, V1, V2, Q) ∼ N(µ̄,Σ)

µ̄ =


ln(CLL)

ln(V1)

ln(V2)

ln(Q)

 =


ln(0.47 L/day)

ln(4.3 L)

ln(2.7 L)

ln(0.97 L/day)


Weight effect on Vmax and CLL ∼ U(0.4, 1.0)

Σ =


0.042 0.021 0.057 0.014

0.021 0.019 0.039 0.045

0.057 0.039 0.132 0.182

0.014 0.045 0.182 0.488


Weight effect on V1 and V2 ∼ U(0.4, 1.0)

Between-subject variability (defined for standard deviation)

Vmax ω ∼ U(0.15, 0.65)

ln(V1 ω) ∼ N [ln(0.25), 0.04]

CLL ω ∼ U(0.15, 0.65)

ln(V2 ω) ∼ N [ln(0.25), 0.04]

Residual variability (defined for standard deviation)

ln(σ) ∼ N [ln(0.15), 0.04]

Population mean weight

ln(population mean weight) ∼ Nbln(72 kg), 6.25E−4]

N(µ, σ2) = normal distribution with mean (µ) and variance (σ2); U(a, b) = uniform distribution
with lower (a) and upper (b) limits; µ̄ is a vector of means and Σ is the variance-covariance ma-
trix for a multivariate distribution

Bayesian Priors
The Bayesian MCMC method in WinBUGS was evaluated with both vague and informative
priors. The rationale behind defining the informative priors were similar to that used for the
simulation parameter uncertainty distributions, but they differed slightly as the informative pri-
ors were updated with additional therapeutic mAb population PK studies that were published or
found in the literature from the time trial replicates were simulated. Due to prolonged run times,
the number of estimation runs for evaluating WinBUGS was limited to 100 replicate data sets
versus 1000 for the NONMEM estimation methods. Bayesian MCMC with vague priors was not
evaluated under the uninformative design, because all of the estimation runs failed to run to
completion.

Table 2: Vague and informative Bayesian prior distributions (see Table 1 for notation definitions)

Vague Priors

ln(Vmax) ∼ N [ln(28.8 mg/day), 10000]

ln(Km) ∼ N [ln(10.0 mg/L), 10000]

ln(CLL) ∼ N [ln(0.72 L/day), 10000]

ln(V1) ∼ N [ln(3.0 L), 10000]

ln(V2) ∼ N [ln(2.0 L), 10000]

ln(Q) ∼ N [ln(1.8 L/day), 10000]

Weight Effect on Vmax ∼ U(0, 5.0)

Weight Effect on CLL ∼ U(0, 5.0)

Weight Effect on V1 ∼ U(0, 5.0)

Weight Effect on V2 ∼ U(0, 5.0)

Vmax ω ∼ U(1.0E−4, 1.0E4)

CLL ω ∼ U(1.0E−4, 1.0E4)

V1 ω ∼ U(1.0E−4, 1.0E4)

V2 ω ∼ U(1.0E−4, 1.0E4)

σ ∼ U(1.0E−4, 1.0E4)

Informative Priors

ln(CLint) ∼ N [ln(2.4 L/day), 0.25]

ln(Km) ∼ N [ln(10.0 mg/L), 1.38]{Vmax = CLint ∗Km}

ln(CLL, V1, V2, Q) ∼ N(µ̄,Σ)

µ̄ =


ln(CLL)
ln(V1)
ln(V2)
ln(Q)

 =


ln(0.25 L/day)

ln(3.6 L)
ln(2.6 L)

ln(0.80 L/day)

 Σ =


0.855 0.266 0.305 0.234
0.266 0.090 0.125 0.089
0.305 0.125 0.349 0.140
0.234 0.089 0.140 0.317


Weight Effect on Vmax ∼ U(0.25, 1.25)

Weight Effect on CLL ∼ U(0.25, 1.25)

Weight Effect on V1 ∼ U(0.25, 1.25)

Weight Effect on V2 ∼ U(0.25, 1.25)

ln(Vmax ω) ∼ N [ln(0.35), 0.16]

ln(CLL ω) ∼ N [ln(0.35), 0.16]

ln(V1 ω) ∼ N [ln(0.25), 0.16]

ln(V2 ω) ∼ N [ln(0.25), 0.16]

ln(σ) ∼ N [ln(0.20), 0.16]

Results

Figure 2: Box plots of percent estimation errors for the population PK model parameters under
the informative and uninformative 600 mg dose study designs. Outliers are not shown for visu-
alization purposes and made up < 10% of the data for each box plot. B-IP and B-VP = Bayesian
MCMC with informative and vague priors, respectively; BSV = between-subject variance; WGT
= weight.

Informative Study Design
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Uninformative 600 mg Study Design
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Figure 3: Global sensitivity analysis results from the informative and uninformative 600 mg
study designs. Plots are shown as the percent estimation error plotted relative to the specific
value of the simulation model parameter for each replicate. Only the LOESS smoothing curves
of the data are shown for each estimation method. The parameter values used to simulate each
replicate data set (i.e., those simulated from the simulation parameter uncertainty distributions)
are shown as a rug plot on the x-axis.

Informative Study Design

FOCE-I LAP-I B-VP B-IP 

Uninformative 600 mg Study Design

FOCE-I LAP-I B-IP 

Simulations were performed to assess the sensitivity of model-based predictions to the observed parameter biases (median percent esti-

mation error, see Figure 2). For the simulations, a set of true and a set of biased population PK model parameter values were specified.

The true parameter values were assigned to the means and midpoints of the simulation parameter prior (uncertainty) distributions. The

biased parameter values were determined by biasing the true values based on observed parameter biases under a given estimation

method/study design scenario. Monte Carlo simulations were performed at different dose levels using the same dosing schedule as

defined for the study designs, and 6000 patients were simulated per dose level. The simulations were carried out using both the true

and biased sets of parameter values. The median and 90% prediction interval of the simulated concentrations during the week 4 full

concentration-time profile served as the metrics by which the true and analysis-derived biased predictions were compared.

Figure 4: Results of the simulations based on parameter biases observed for FOCE-I under
the informative study design. Similar results were observed for LAP-I and Bayesian MCMC with
both sets of priors. The true and analysis-derived biased predictions are indicated by the solid
black lines and dashed red lines, respectively. The three lines represent the 5th, 50th, and 95th
percentiles determined from 6000 patient concentration-time profiles simulated at each dose
level.

Figure 5: Results of the simulations based on parameter biases observed for LAP-I (top panel)
and Bayesian MCMC with informative priors (bottom panel) under the uninformative 600 mg
study design. Similar results were observed for LAP-I and FOCE-I.

Conclusions

• The performance of all the evaluated methods under the informative design was adequate
and comparable, as the bias and precision (median absolute percent estimation error) for all
parameters was less than 25% and 52%, respectively. When sufficient concentration-time
data are available to characterize the nonlinear elimination of the therapeutic mAb, then any
one of the evaluated methods would likely be suitable for the population PK analysis.

• Under the uninformative design, the estimation performance of FOCE-I and LAP-I decreased
as bias and precision for many model parameters, in particular those related to nonlinear
elimination, significantly increased to±40–173% and 53–173%, respectively, while Bayesian
MCMC with informative priors produced results that were comparable to those under the in-
formative design. In situations where insufficient data are available to characterize the non-
linear elimination of the mAb, and relevant prior information is readily available, the use of a
Bayesian MCMC method with informative priors should be considered.
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