
Systematic Review of Versioned Files

for Modeling and Simulation Quality Control:

The “review” R Package

Timothy Bergsma, Jeannine Fisher, Marc Gastonguay,
Jeffrey Hane, William Knebel, Matthew Riggs, James Rogers

Metrum Research Group, Tariffville, CT

Objectives
To create systematic mechanisms for (1) documenting the review of version-controlled files in a
production modeling and simulation environment and for (2) analyzing review documentation to
support administrative decisions for regulatory compliance of modeling and simulation processes.

Methods
Software was implemented as the package review (current version 2.4.1): a publicly available
[1] extension of the R programming language [2]. Functions were designed to support Subversion
[3]: an open source version control system. Scope of operations was designed to be limited to a
directory checkout and all its descendants. A name, format, and location were chosen for a review
log to capture information critical to the review process. Primary functions were developed to
register acceptance of the current versions of particular files, and to detect the need for further
review due to file revision. Secondary functions were developed to support assignment of review
tasks within the constraints of the review log format. Integrated use of review with Subversion
was documented. Support was added for calculating version status for files generated by other
files.

Results
In the checkout directory, the function logCreate creates QClog.csv with columns file,
origin, revf, revo, reviewer, and time.

library(review)

review 2.4.1 loaded

writeLines(system(intern = TRUE, "svn co file:///repo demo"))

A demo/figure.pdf

A demo/code1.R

A demo/code2.R

Checked out revision 1.

setwd("demo")

dir()

[1] "code1.R" "code2.R" "figure.pdf"

logCreate()

dir()

[1] "QClog.csv" "code1.R" "code2.R" "figure.pdf"

The user adds QClog.csv to the repository using Subversion techniques. Each row in
QClog.csv documents acceptance of a particular revision of a particular file in the checkout
directory or a subdirectory. The user generates new rows with the function logAccept, specify-
ing file names. Optionally, the user may specify origin, which names a file responsible for the
contents of file (e.g,textttorigin is a script that generates the data table file; if not specified,
origin defaults to file.). The field reviewer is populated with the R login of the current user
(Sys.info()["login"]). The field time is populated with the current system time expressed
as GMT.

logRead()

[1] file origin revf revo reviewer time

<0 rows> (or 0-length row.names)

logAccept("code1.R")

logAccept("figure.pdf", origin = "code1.R")

logRead()

file origin revf revo reviewer time

1 code1.R code1.R 1 1 timb 2011-03-17 12:46:58 GMT

2 figure.pdf code1.R 1 1 timb 2011-03-17 12:46:58 GMT

The function logAssign creates a record accepting revision zero of a particular file on behalf
of a specified reviewer. Since revision zero of a file never exists, the idiom serves as a conve-
nient and unambiguous mechanism to request or assign review of a particular file in a multi-user
environment; it is also an opportunity to register a non-default value of origin, if any. After
QClog.csv is checked in to the Subversion repository, other users may check it out and detect
user-specific assignments with logAssignments.

logAssign("code2.R")

logRead()

file origin revf revo reviewer time

1 code1.R code1.R 1 1 timb 2011-03-17 12:46:58 GMT

2 figure.pdf code1.R 1 1 timb 2011-03-17 12:46:58 GMT

3 code2.R code2.R 0 0 anyone 2011-03-17 12:46:58 GMT

logAssignments(reviewer = "anyone")

[1] "code2.R"

system("svn ci -m assignments")

An arbitrary number of acceptances can be logged for a particular file. The function logSummary

sorts the results of logRead by file, revf, and time, preserving only the last record per file;

it also uses the Subversion interface to calculate the checkout’s head revision number for the
file (headf) and its origin (heado). The function logPending further reduces the remaining
records to those that are out of date: i.e., the number of the head revision is greater than that of
the reviewed revision, for either the file or its origin. This is always true for files that have been
assigned but never reviewed, since all extant files have revisions greater than zero.

logSummary()

file origin revf headf revo heado reviewer time

1 code1.R 1 1 timb 2011-03-17 12:46:58 GMT

3 code2.R 0 1 anyone 2011-03-17 12:46:58 GMT

2 figure.pdf code1.R 1 1 1 1 timb 2011-03-17 12:46:58 GMT

logPending()

file revf headf reviewer time

3 code2.R 0 1 anyone 2011-03-17 12:46:58 GMT

Typically, an author creates a log within a Subversion checkout (logCreate) and then requests
review (logAssign) of critical files. The review log grows as peer reviewers commit acceptance
records (logAccept) by means of the Subversion interface. Content issues are negotiated as nec-
essary between the author and reviewer until a version of the file exists that the reviewer can
accept.

logAccept("code2.R")

system("svn ci -m reviewed")

The author updates his checkout to monitor progress. An empty table returned by logPending

supports the administrative decision that review is complete. Subsequent alterations to reviewed
files cause them to pend once again. Reviewers may take advantage of previous effort by focusing
on the differences between previously accepted versions and pending versions (readily tabulated
by the diff utility of the Subversion interface).

logPending()

[1] file revf headf reviewer time

<0 rows> (or 0-length row.names)

system("echo new code >> code1.R")

system("svn ci -m changes")

logPending()

file origin revf headf revo heado reviewer time

1 code1.R 1 2 timb 2011-03-17 12:46:58 GMT

2 figure.pdf code1.R 1 1 1 2 timb 2011-03-17 12:46:58 GMT

logAccept("code1.R")

logPending()

file origin revf headf revo heado reviewer time

2 figure.pdf code1.R 1 1 1 2 timb 2011-03-17 12:46:58 GMT

The review package was written in 2008. Version 2.4 has been in production use since January
2010.

Conclusions
Independent review of critical files is a good general practice for verifying correctness of pharma-
cometric analyses. Tracking review activity poses characteristic challenges for documents that
are created and maintained electronically. Regulatory guidance for the pharmaceutical industry
emphasizes capture of unambiguous metadata regarding management of electronic records, such
as time, agent, activity, and object version [4]. The review package for the R programming
language integrates with Subversion to address these needs: each captured record is explicitly an
act of administrative acceptance, where time of acceptance is captured in GMT, agent is cap-
tured as the user’s login, and version identifier is supplied by the Subversion interface. Further,
the system hosting Subversion unambiguously identifies the agent modifying the log, as noted
elsewhere [5]. In 21CFR11 parlance [4], review records have many of the properties of electronic
signatures and serve a similar role. If one chooses to think of QClog.csv itself as an electronic
record, then use of Subversion meets FDA’s definition of audit trail [6].

The review package provides mechanisms both for documenting review activity and for analyzing
the resulting documentation. Functions logCreate, logAssign, and logAccept create and
modify QClog.csv interactively. Functions logRead, logSummary, and logPending render
QClog.csv in various formats. In particular, logPending reports files that were selected for
review but have not been reviewed yet, as well as files that have been revised since last review.
The review package relies on Subversion software to distribute changes among users and to track
file version information.

References
[1] http://cran.r-project.org/web/packages/review

[2] http://www.r-project.org

[3] http://subversion.apache.org

[4] 21CFR11 Sec. 11.10, 11.50. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/
CFRSearch.cfm?CFRPart=11&showFR=1

[5] R: regulatory compliance and validation issues. A guidance document for the use of R in regu-
lated clinical trial environments. Technical report, The R Foundation for Statistical Computing
(2008).

[6] http://www.fda.gov/OHRMS/DOCKETS/98fr/04d-0440-gdl0002.pdf

©2011 Metrum Research Group Copies of this poster are available at www.metrumrg.com/publications ACoP 2011, San Diego, CA, April 3–6, 2011


