
Strategic Data Handling for Pharmacometrics

Timothy Bergsma

Metrum Research Group, Tariffville, CT

Objectives
The relational database model [1] specifies that record storage order must be non-informative. In
contrast, many pharmacometric analyses use data formats with highly informative record order.
Our objective was to develop succinct, expressive, rapid data assembly techniques that respect
record order.

Methods
Software was implemented within the package Mifuns (current version 4.2.2): a publicly available
[2] extension of the R programming language [3]. Novel functions were developed by strategic
extension of base R functions. The function stableMerge extends base merge to produce an
order-stable left-join. The functions first, last, nth, and only extend base match to iden-
tify indexed singularities and repeat them at all positions in a level. The function distance

analyzes positional information with respect to singularities identified by nth; derived functions
before, at, and after summarize distance information. Finally, reapply extends base tap-

ply, stretching each sub-result (using base rep) to the original length while preserving indexed
order.

Conclusions
To simplify this discussion, we classify functions by the dimensionality of their values: scalar func-
tions (e.g., mean), vector functions (e.g., match), and table functions (e.g., merge). Further, we
define processors as functions whose value has the same dimensionality as the primary argument
and isometric functions as those whose value has the same extent (length of first dimension) as
the primary argument. Last, we define stable functions as processors that do not permute the
first dimension more than necessary. The term is borrowed from sorting theory; in the present
context, “not more than necessary” implies “not at all”. Under these definitions, stableMerge
is a stable isometric table processor, while nth (etc.) and reapply are stable isometric vector
processors.

Stable isometric processors have strategic utility in pharmacometric data assembly, where the
dominant workflow paradigm involves“building up”a table by stepwise modifications. Processors
support the paradigm by returning data in the same form as input: either a variant of a table or
a variant of a column. Isometric functions prevent unintentional deletions or additions. Stable
functions preserve informative record order without the need for additional sorting and interme-
diate data objects. Stable isometric processors combine these benefits with potentially powerful
effect.

Many pharmacometric data handling operations may be expressed succinctly using the functions
described, all of which respect original record order. In fact, record order is central to the com-
putational strategy of nth (etc.). In contrast, record order is computationally immaterial for
reapply when used with a scalar function argument, such as mean, but will be consequential
when reapply is used with“longitudinal”isometric vector processors, e.g., cumsum and rev (but
not sort).

In summary, stableMerge, nth (etc.), and reapply promote strategic data handling for phar-
macometrics by enabling succinct, expressive, rapid data assembly techniques that respect record
order.

References
[1] Codd, E.F. The Relational Model for Database Management: Version 2 (Addison-Wesley,

Reading, Mass., 1990).

[2] http://cran.r-project.org/web/packages/MIfuns

[3] http://www.r-project.org

Results
stableMerge

Pharmacometric data handling frequently requires a left-join, e.g., adding subject-level demo-
graphic variables to a table ordered by subject and time. In base R, left-joins are achieved using
merge(x, y, all.x=TRUE, all.y=FALSE). However, the R help for merge clearly indicates
that the value of merge may have column order, row order, and row names different from those
of the primary argument (x). In fact, even the number of rows may change, if there are duplicates
within matching columns of y. In contrast, stableMerge(x,y) guarantees that in its value
(with respect to x) no rows are added, dropped, renamed, or reordered and that columns are
not reordered. The function stableMerge deconstructs the by argument of merge, so the user
must ensure that left and right columns with matching meaning have matching names, and vice
versa (good general practice). Repeated matches within y are disallowed. The result is a rapid,
intelligible, safe technique for left-joins that gives order-stable output.

library(MIfuns)

MIfuns 4.2.2

conc

C SUBJ TIME CMT DV

1 1 a 0 1 8

2 0 a 0 1 1

3 0 a 0 2 2

4 0 a 1 1 5

5 0 a 1 2 10

6 0 b 0 1 2

7 0 b 0 2 4

8 0 b 1 1 10

9 0 b 1 2 20

dem

SUBJ SEX AGE

1 a 0 23

2 b 1 44

stableMerge(conc,dem)

C SUBJ TIME CMT DV SEX AGE

1 1 a 0 1 8 0 23

2 0 a 0 1 1 0 23

3 0 a 0 2 2 0 23

4 0 a 1 1 5 0 23

5 0 a 1 2 10 0 23

6 0 b 0 1 2 1 44

7 0 b 0 2 4 1 44

8 0 b 1 1 10 1 44

9 0 b 1 2 20 1 44

space

nth

Whereas the arguments and value of stableMerge are tables (class data.frame), the argu-
ments and value of nth(x, where, within, n=1, ...) are vectors. In a table assembly
context, use of nth is equivalent to a subset-and-left-join operation. The function nth returns,
for each position in x, the nth element of x, optionally limiting candidate elements by where

and optionally breaking the evaluation across subsets, as specified by within. The argument n
can be 0, returning all NA; or negative, which counts instances from the end of the vector (or
subsets). If n is NA, all elements are returned. “Interlaced” levels are handled correctly. If x is
missing, nth returns subscripts (useful for subsetting other variables).

Using nth, one can compute (for instance) subject-wise, compartment-wise differences of each
value in a vector from some arbitrary subset member.

within(

conc,

delta <- DV - nth(

DV,

where=!C,

within=list(SUBJ, CMT),

n=2

)

)

C SUBJ TIME CMT DV delta

1 1 a 0 1 8 3

2 0 a 0 1 1 -4

3 0 a 0 2 2 -8

4 0 a 1 1 5 0

5 0 a 1 2 10 0

6 0 b 0 1 2 -8

7 0 b 0 2 4 -16

8 0 b 1 1 10 0

9 0 b 1 2 20 0

Other functions extend nth. The functions first and last are convenience wrappers that set
n to 1 and -1, respectively. The function only is like first but returns NA if the first value is
not the only value. The function distance returns subscripts less the nth subscripts, optionally
considering where and within. The functions before, at, and after test whether distance is
less than, equal to, or greater than zero.

reapply

Implicitly, nth applies an element-select function to cells of an indexed vector, repeating the
scalar result for all elements in the cell. With reapply(x, INDEX, FUN, ...), a function is
named explicitly, and need not return a scalar value. The function reapply applies a function
to each cell of a vector, as specified by levels of the index. However, reapply repeats each
sub-result as necessary to match the number of input elements per cell, and returns the global
result as a vector in an order corresponding to the original index. The result is a highly flexible,
compact mechanism for manipulation of indexed vectors.

For example, consider a table of blood pressure data. We wish to impute missing MMHG using
locf, and add columns for baseline and mean, per ID and ENDP. The following strategic and
conventional methodologies give identical output, but the former is more compact, expressive,
and understandable.

strategic

x$locf <- with(x,reapply(MMHG,INDEX=list(ID,ENDP),FUN=locf))

x$base <- with(x,first(MMHG,where=!is.na(MMHG),within=list(ID,ENDP)))

x$mean <- with(x,reapply(MMHG,INDEX=list(ID,ENDP),FUN=mean,na.rm=TRUE))

conventional

x <- split(x,x[,c('ID','ENDP')])
x <- lapply(

x,

function(x){

x$locf <- locf(x$MMHG)

x$base <- x$MMHG[!is.na(x$MMHG)][1]

x$mean <- mean(x$MMHG,na.rm=TRUE)

x

}

)

x <- do.call(rbind,x)

x <- x[order(xID,xTIME,-x$EVID,factor(x$ENDP,levels=c('na','SYS','DIA'))),]
rownames(x) <- NULL

x$ENDP <- as.character(x$ENDP)

x

ID TIME EVID AMT ENDP MMHG locf base mean

1 1 0 2 NA SYS 200 200 200 130

2 1 0 2 NA DIA 110 110 110 80

3 1 0 1 10 na NA NA NA NaN

4 1 24 2 NA SYS NA 200 200 130

5 1 24 2 NA DIA NA 110 110 80

6 1 48 2 NA SYS 120 120 200 130

7 1 48 2 NA DIA 80 80 110 80

8 1 72 2 NA SYS 70 70 200 130

9 1 72 2 NA DIA 50 50 110 80

10 2 0 2 NA SYS NA NA 120 127

11 2 0 2 NA DIA NA NA 80 80

12 2 0 1 10 na NA NA NA NaN

13 2 24 2 NA SYS 120 120 120 127

14 2 24 2 NA DIA 80 80 80 80

15 2 48 2 NA SYS 150 150 120 127

16 2 48 2 NA DIA 90 90 80 80

17 2 72 2 NA SYS 111 111 120 127

18 2 72 2 NA DIA 70 70 80 80

©2011 Metrum Research Group Copies of this poster are available at www.metrumrg.com/publications ACoP 2011, San Diego, CA, April 3–6, 2011

