Evaluation of Rapid and Sustained Population Viral Response Rates Predicted Under Hepatitis C Viral Dynamic Models

Kyle T. Baron1, Patanjali Ravva2, Vivek Purohit2, Matthew M. Riggs1, Marc R. Gastonguay1

Metrum Research Group LLC1 / Pfizer, New London, CT2

June 21, 2011
Modeling and HCV drug development

Model-based simulation is playing a key role in:
- Understanding HCV and its treatment
- Efficient development decisions for new therapeutics
- Regulatory decisions

Important to qualify performance of published models for population simulation
Objective

- Evaluate model-predicted early and late viral response rates
 - Simulate from parametric models
 - Compare with aggregate clinical SOC data

- Snoeck et. al. (2010) "A Comprehensive Hepatitis C Viral Kinetic Model Explaining Cure"
 - Population-based analysis
 - Large clinical data set

- Model adapted from Dahari et. al. (2007) "Modeling hepatitis C virus dynamics: Liver regeneration and critical drug efficacy". (figure 2)
 - Plausible fixed-effect parameter set
 - Random effects structure borrowed from Snoeck et al.
Monte Carlo simulation methods

- Model equations implemented in R
 - Lsoda solver in deSolve() package
 - Univariate parameter distributions

- Standard of care intervention
 - peg-IFN-alfa-2a 180 μg/week + RBV 13 mg/kg/d x 48 weeks
 - Constant treatment over time

- Dropout criteria
 - 12 weeks: detectable VL & < 2-log drop from baseline
 - 24 weeks: detectable VL
 - Limit of detection: 100 copies/mL

- Response rate versus time
 - 4, 12, 24, 48, 72 weeks
 - Responder: undetectable viral load & not previously dropped
 - Compare with meta data set
Methods

SOC meta data set

- **11 trials**
- **Years: 2002 to 2010**
- **peg-IFN-alfa-2a + RBV**
- **Weighted response rate by week**
- **95% CI by week from beta-binominal analysis in WinBUGS**

Viral response rate vs. time

Study−level rates

Weighted rate (95% CI)

Viral response rate

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 ...

Viral response rate vs. time

Study−level rates

Weighted rate (95% CI)

Viral response rate

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 ...
Simulated dropout due to insufficient response (%)

<table>
<thead>
<tr>
<th>Model</th>
<th>12 weeks</th>
<th>24 weeks</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snoeck et. al.</td>
<td>22.5</td>
<td>11.9</td>
<td>34.4</td>
</tr>
<tr>
<td>Modified Dahari et. al.</td>
<td>35.2</td>
<td>1.2</td>
<td>36.4</td>
</tr>
</tbody>
</table>
Simulated viral load versus time (N=250)
Viral response rates versus time

Study-level rates • Weighted rate • Simulated

Time (weeks)

Dahari et. al.

Snoeck et. al.

Viral response rate

©2011 Metrum Research Group LLC

HCV Model Evaluation

June 21, 2011
Results

Viral response rates versus time

Study-level rates Weighted rate Simulated Simulated – adj

Dahari et. al.

Snoeck et. al.

©2011 Metrum Research Group LLC

HCV Model Evaluation

June 21, 2011 9 / 12
Viral response rates versus time

Study-level rates

Weighted rate

Simulated

Simulated – adj

Dahari et. al.

Snoeck et. al.

Viral response rate

Time (weeks)

0 20 40 60
Summary

- Simulated response rates matched aggregate data well up to 48 weeks - under unrealistic assumption that all drop is due to insufficient response only

- Simulated SVR rates were biased unless a simplistic dropout adjustment was used

- These limitations should be considered before using these models in clinical trial simulation

- For further investigation:
 - More comprehensive dropout model
 - Dose adjustments & non-adherence
 - Possibly misspecification of cure boundary
 - Covariance of inter-individual random effects
Acknowledgements

- Pfizer
 - Piet Van der Graaf

- Metrum Research Group
 - Dan Polhamus
 - Jim Rogers