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Introduction

Bayesian data analysis using Stan/Torsten for
pharmacometric applications

Why Bayesian analysis for pharmacometrics applications?
Why Stan?
Torsten: Adapting Stan for typical pharmacometric modeling tasks

Key components
Examples
Pros & cons relative to other Bayesian PMX options

Things to come
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Why Bayesian?

Why Bayesian analysis for pharmacometrics
applications?

Decision-making supported by quantitative synthesis of prior
knowledge and heterogenous data.
Calibration (and recalibration) of complex QSP models as new
data accumulates.
Bayesian framework more easily accommodates complexity in the
stochastic structure of a model.
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Why Bayesian?

Why Bayesian?

Pharmacometricians are often called on to leverage prior
knowledge in order to interpret new data and facilitate
decision-making in drug development.

Qualitative prior knowledge is captured in the mathematical form of
a model, i.e., the likelihood function.
Quantitative prior knowledge may be captured in the form of
probability distributions of model parameter values, i.e., prior
distributions.

Add data and you have all the ingredients of Bayesian data
analysis.
With Bayes Rule and suitable computation tools those
components are combined to yield posterior distributions of
model parameters and predictions.
Those distributions permit probabilistic inferences directly relevant
to decision-making.
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Why Stan?

Why Stan?

Stan (http://mc-stan.org/) is a general purpose Bayesian modeling
package [1]

General model specification language
Primarily uses a Hamiltonian Monte Carlo (HMC) sampler
(standard HMC or NUTS (no U-turn sampler)). Other methods
include:

Optimization for estimation of posterior modes.
Variational inference for approximate Bayesian inference.

Developed by a team headed by Andrew Gelman of Columbia
University
C++ program available with several interfaces: rstan, PyStan,
CmdStan, MatlabStan, Stan.jl, StataStan, ShinyStan
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Why Stan?

Stan: Why is it called that?

Stanislaw Ulam, co-inventor of
Monte Carlo methods, holding an
analog computer known as the
FERMIAC that performed a
mechanical simulation of random
diffusion of neutrons
(http://fas.org/sgp/othergov/
doe/lanl/pubs/00326866.pdf).
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Why Stan? How do I get it?

Stan: How do I get it?

Most Stan interfaces may be downloaded from the Stan website
(http://mc-stan.org/).
rstan [2] is available on CRAN (https://cran.r-project.org/)
Documentation

Stan: https://github.com/stan-dev/stan/releases/download/
v2.17.0/stan-reference-2.17.0.pdf

rstan: https://cran.r-project.org/web/packages/rstan/
vignettes/rstan.html
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Why Stan? How do I get it?

Stan model specification language

Very flexible model specification language
Imperative language: statements executed in the order in which
they are written.
Computational control structures, e.g., if-then-else, for and while
loops
Large collection of:

Operators
Built-in functions
Probability distributions

User-defined functions and distributions
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Why Stan? How do I get it?

Stan features particularly relevant to pharmacometrics

Functions for numerical solution of ODEs:
integrate ode rk45

Runge Kutta Dopri 4th/5th order algorithm with the implementation
from Boost
Suitable for non-stiff ODEs

integrate ode bdf
Backward differentiation formula (BDF) method with the
implementation from SUNDIALS (CVODES)
Designed for stiff ODEs

There are no built-in handlers for PKPD event
schedules—requires user programming.
HMC/NUTS more efficiently samples the complex,
high-dimensional joint posterior distributions resulting from
nonlinear PMX models.
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Why Stan? How do I get it?

OK I get it. Stan is flexible. So what?
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Why Stan? How do I get it?

Let’s take a look at an example that exploits that
flexibility.

Joint modeling of individual patient data (IPD) and
aggregate data (AD)

http://www.stat.columbia.edu/~gelman/research/published/

extrap_paper_aoas.pdf (accepted by Annals of Applied Statistics) [5]
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Why Stan? How do I get it?

Why combine individual and aggregate data?

Addition of AD to enhance/extend inferences from
IPD analysis

Good reasons
Indirect comparisons of treatment effects

Particularly when comparators are only available in AD

Quantifying effects of other group-level covariates (when AD is
available for the relevant groups)
Quantifying inter-trial variability
Improving precision of some model parameter estimates

Not-so-good reasons
Quantifying effects of patient-level covariates
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Why Stan? How do I get it?

Why combine individual and aggregate data?

Addition of IPD to enhance/extend inferences from
AD analysis

IPD required to inform correlations among individual-level
outcomes and covariates
IPD required to quantify effects of patient-level covariates
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Why Stan? How do I get it?

Problem faced by Weber et al

Limited clinical data (IPD) for a new anti-VEGF agent for treating
wet AMD.

Want a model suitable for simulating longitudinal data for
individual patients and making inferences about:

Treatment regimens.
Clinical trial designs.

Want to enhance the precision and generalizability of the model
by leveraging past data from trials of other anti-VEGF agents.

Ranibizumab: IPD from 3 trials
Aflibercept: published AD from 2 trials

Nonlinear longitudinal model for IPD
Indirect action KPD model for BCVA (best corrected visual acuity)
requiring numerical solution of ODEs
Hierarchical (inter-trial, inter-individual and residual variability)
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Why Stan? How do I get it?

Tackling the problem with Stan

The IPD likelihood is readily implemented in Stan.
An approximate AD likelihood is imputed via simulations of
individual data [6, 7, 8, 9].
For each treatment arm suppose you have a set of means
y i , i = 1,2, . . . ,nT of longitudinal data for N individuals.
Impute the joint likelihood of the y i ’s by:

Simulating individual data for a large number of individuals,
Calculating the mean vector Ms and covariance matrix Σs of the
simulated values,
Approximating the joint likelihood of y i , i = 1,2, . . . ,nT as
multivariate normal: N

(
Ms,

Σs
N

)
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Why Stan? How do I get it?

Stan is flexible enough to support this approach

The model specification language permitted implementation of all
aspects of the model:

3 level stochastic hierarchy,
Numerical solution of ODEs,
Simulation to impute AD likelihood,
Fully Bayesian data analysis.
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Torsten: Prototype library of PKPD functions for Stan

Torsten: Library of PKPD functions for Stan

A set of Stan functions that provides functionality similar to NONMEM’s
PREDPP library

Core functions in the current version:
One & two compartment PK models with 1st order absorption

Analytical solutions

Linear compartment model specified as a rate constant matrix
Semi-analytical solution based on matrix exponential

General compartmental model specified as a system of 1st order
ODEs

Numerical solutions
Non-stiff solver: Runge Kutta Dopri 4th/5th order algorithm with the
implementation from Boost
Stiff solver: Backward differentiation formula (BDF) method with the
implementation from SUNDIALS (CVODES)
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Torsten: Prototype library of PKPD functions for Stan

Torsten Teorell

T. Teorell. Kinetics of distribution of substances administered to the
body. I. The extravascular modes of administration. Arch Int
Pharmacodyn et Ther 57: 205-225, 1937.
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Torsten: Prototype library of PKPD functions for Stan

Torsten PMX functions

Uses NONMEM/PREDPP conventions for data specification and
event handling
Data format: Time-ordered event records for each individual à la
NONMEM
Implemented NONMEM data types: TIME, CMT, AMT, RATE,
EVID, II, ADDL, SS
Recursive calculation: For each event time calculate the amount
in each compartment given the compartment amounts plus doses
at the previous event time.
Allows for time-varying (piece-wise constant) parameter values.
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Torsten: Prototype library of PKPD functions for Stan

Torsten: Prototype library of PKPD functions for Stan

Current version of Torsten is available at:
https://github.com/metrumresearchgroup/Torsten

Includes installation instructions for use with CmdStan and RStan.
Documentation: https://github.com/metrumresearchgroup/
Torsten/blob/master/docs/torsten_manual.pdf
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Torsten: Prototype library of PKPD functions for Stan

Torsten example: PKPD model of drug-induced
neutropenia
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Torsten: Prototype library of PKPD functions for Stan

Friberg-Karlsson semi-mechanistic model for
drug-induced myelosuppression

PK model: Two compartment model with first order absorption
describing plasma drug concentration on the i th occasion in the j th
subject as a function of time, dose and body weight:

log
(
cij
)
∼ N

(
log
(
ĉij
)
, σ
)

ĉij = f2cpt
(
tij ,Dj , τj ,CLj ,Qj ,V1j ,V2j , kaj

)
Friberg-Karlsson semi-mechanistic model for drug-induced
myelosuppression [10, 11, 12, 13, 14, 15]
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Torsten: Prototype library of PKPD functions for Stan

Friberg-Karlsson semi-mechanistic model for
drug-induced myelosuppression

dProl
dt

= kprolProl (1 − Edrug)

(
Circ0

Circ

)γ
− ktr Prol

dTransit1
dt

= ktr Prol − ktr Transit1

dTransit2
dt

= ktr Transit1 − ktr Transit2

dTransit3
dt

= ktr Transit2 − ktr Transit3

dCirc
dt

= ktr Transit3 − kcircCirc

Edrug = αĉ

kprol = kcirc = ktr

MTT =
n + 1

ktr

ĉ ≡ plasma drug concentration

Circ ≡ absolute neutrophil count (ANC)

Parameters in red are system
parameters, i.e., drug-independent.
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Torsten: Prototype library of PKPD functions for Stan

IIV and prior distributions

Inter-individual variation

log
(
CLj ,Qj ,V1j ,V2j , kaj ,MTTj ,Circ0j , αj

)
∼ N

(
log

(
ĈL
(

bwj

70

)0.75

, Q̂
(

bwj

70

)0.75

, V̂1

(
bwj

70

)
, V̂2

(
bwj

70

)
, k̂a,

M̂TT , Ĉirc0, α̂
)
,Ω
)

Prior distributions: moderately informative for PK, strongly informative for system
parameters, weakly informative for drug effect

ĈL ∼ log N (log(10), 0.5) Q̂ ∼ log N (log(15), 0.5) V̂1 ∼ log N (log(35), 0.5)

V̂2 ∼ log N (log(105), 0.5) k̂a ∼ log N (log(2), 0.5)

M̂TT ∼ log N (log(125), 0.2) Ĉirc0 ∼ log N (log(5), 0.2) γ ∼ log N (log(0.17), 0.2)

α̂ ∼ log N
(

log(3× 10−4), 1
)

σ ∼ half-Cauchy (0, 1)

Ω = diag (ω) P diag (ω)

ωi ∼ half-Cauchy (0, 1) , i ∈ {1, 2, . . . , 8} P ∼ LKJCorr (1)
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Torsten: Prototype library of PKPD functions for Stan

Good convergence and mixing with only 4 chains of
100 warmup and 100 post-warmup samples/chain

parameter mean sd 95% CI n eff Rhat
CLHat 1.30e + 01 2.51e + 00 (8.48e + 00, 1.82e + 01) 400 0.996
QHat 1.76e + 01 4.92e + 00 (9.75e + 00, 2.88e + 01) 400 0.997
V1Hat 4.51e + 01 9.29e + 00 (2.90e + 01, 6.52e + 01) 400 1.000
V2Hat 1.06e + 02 1.61e + 01 (7.81e + 01, 1.38e + 02) 400 0.995
kaHat 2.30e + 00 4.75e − 01 (1.48e + 00, 3.37e + 00) 324 1.004
sigma 9.73e − 02 4.62e − 03 (8.90e − 02, 1.06e − 01) 349 1.003

alphaHat 3.06e − 04 2.99e − 05 (2.46e − 04, 3.66e − 04) 308 0.997
mttHat 1.22e + 02 1.76e + 01 (9.22e + 01, 1.61e + 02) 400 1.002

circ0Hat 5.35e + 00 4.72e − 01 (4.44e + 00, 6.32e + 00) 400 0.993
gamma 1.94e − 01 1.53e − 02 (1.66e − 01, 2.27e − 01) 303 1.009

sigmaNeut 9.92e − 02 5.59e − 03 (8.93e − 02, 1.10e − 01) 400 1.003
omega[1] 5.00e − 01 2.57e − 01 (2.27e − 01, 1.11e + 00) 400 1.003
omega[2] 7.30e − 01 3.08e − 01 (3.67e − 01, 1.59e + 00) 400 1.011
omega[3] 5.83e − 01 2.69e − 01 (2.68e − 01, 1.18e + 00) 400 0.998
omega[4] 3.85e − 01 1.58e − 01 (1.86e − 01, 7.22e − 01) 335 1.005
omega[5] 5.33e − 01 2.49e − 01 (2.18e − 01, 1.07e + 00) 400 1.005
omega[6] 4.10e − 01 1.77e − 01 (2.08e − 01, 8.29e − 01) 310 1.003
omega[7] 2.13e − 01 9.64e − 02 (1.08e − 01, 4.95e − 01) 319 1.005
omega[8] 1.77e − 01 1.17e − 01 (3.95e − 02, 5.02e − 01) 336 0.996
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Torsten: Prototype library of PKPD functions for Stan

Model fits (posterior median & 90 % CI)

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●
●
●

●

●●
●●●●

●
●
●●

●●

●

●

●

●

●

●

●●

●

●
●

●
●
●
● ●

●

●

●

●
●

●

●

●
●
●
●
●

●

●

●

●●
●

●

●

●

●
●
●
●●●●●●●●●●●●●

●

●
●

●

●
●

●●

●

●

●
●
●●●

●

●

●

●●
●

●●

●
●

●●

●

●

●

●●

●
●

●
●

●

●●
●●
●●

●●
●

●
●●●●●●

●

●

●

●
●
●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●
●●●●●

●●●●●
●●●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●●
●●

●●●
●
●
●
●
●
●
●●

●

●

●
●
●
●

●

●
●

●

●
●

●
●●

1 2 3

4 5

0

500

1000

1500

0

500

1000

1500

0 200 400 600 0 200 400 600
time (h)

M
E

−
2 

pl
as

m
a 

co
nc

en
tr

at
io

n 
(n

g/
m

L)

individual predictions

●
●

●●

●

●

●●

●

●●

●
●●

●

●

●
●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●
●

●●●
●●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●●
●

●

●

●
●

●

●

●●

●
●

●
●

●●

●

●

●
●

●
●

●●

●●

1 2 3

4 5

2

4

6

8

2

4

6

8

0 200 400 600 0 200 400 600
time (h)

A
N

C

individual predictions

c©2018 Metrum Research Group Bayesian PMX with Stan/Torsten 15 May 2018 27 / 45



Torsten: Prototype library of PKPD functions for Stan Why Stan/Torsten?

Why Stan/Torsten?

Flexibility
Flexible w.r.t. stochastic structure

Any number of levels variability
Large selection of built-in probability distributions
Permits sub-models with very different stochastic hierarchies

Flexible w.r.t. deterministic structure
Control structures: if-then-else, for and while loops
Large collection of built-in functions
Operators and functions for vector and matrix calculations

Computational efficiency

Typically faster than Gibbs or Metropolis-Hastings
Measured in terms of time

effective sample size

Also includes optimization and variational inference methods for
rapid approximate Bayesian analysis
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Torsten: Prototype library of PKPD functions for Stan Why Stan/Torsten?

Why Stan/Torsten?

Some alternative general purpose modeling tools with Bayesian
analysis capabilities

BUGS variants (WinBUGS, OpenBUGS, JAGS)
SAS (Proc MCMC + SAS/IML)
Pharmacometrics s/w: NONMEM & Monolix
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Torsten: Prototype library of PKPD functions for Stan Why Stan/Torsten?
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Flexibility wrt stochastic
structure ++ ++ ++ ++ + − −
Flexibility wrt deterministic
structure ++ − − − ++ + +
Built-in distributions ++ + + + + − −
Discrete parameters − + + + + − −
Support for PK models

ODE solver(s) + + ± − + + +
Event schedules, e.g.,
multiple dosing + + − − − + +

Within chain parallel
computation − − − − ? + ?
Active development
program + − − + + + +
Portability ++ − − ++ + ++ ++
Open source + − + + − − −
Cost + + + + −−− −− −−
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Role of Stan/Torsten for PMX applications

Current role of Stan/Torsten for PMX applications

Very flexible platform for fully Bayesian analyses that cannot be
implemented in standard PMX platforms, e.g., NONMEM or
Monolix, without substantial compromises.

You can do more routine popPK and popPKPD analyses with
Stan, particularly with the Torsten extensions, but

Computation times make it non-optimal for such applications
Bottom line: For the moment save it for problems where

Fully Bayesian methods are particularly useful, e.g., use of
informative priors.
A more flexible model specification language is needed.
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Role of Stan/Torsten for PMX applications

Barriers to routine use of Stan for PMX applications

Computation time required for adequate MCMC sampling
Programming time required to implement typical popPKPD models
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Role of Stan/Torsten for PMX applications
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Role of Stan/Torsten for PMX applications

Stan & Torsten development plans

Fast approximate Bayesian methods
Gradient-based marginal optimization (GMO) for marginal
maximum penalized likelihood estimation
Data-streaming variational Bayes via stochastic automatic
differentiation variational inference (ADVI)
Data-parallel variational Bayes via expectation propagation (EP)

Within chain parallel computation
DAEs
PDEs
SDEs
R package to simplify implementation of pharmacometrics models
R package for specialized visualization and reporting of PKPD
model analyses
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Stan & Torsten development plans

Fast approximate Bayesian methods
Gradient-based marginal optimization (GMO) for marginal
maximum penalized likelihood estimation
Data-streaming variational Bayes via stochastic automatic
differentiation variational inference (ADVI)
Data-parallel variational Bayes via expectation propagation (EP)

Within chain parallel computation
DAEs
PDEs
SDEs
R package to simplify implementation of pharmacometrics models
R package for specialized visualization and reporting of PKPD
model analyses

Addition of those features will make Stan/Torsten a superior open
source alternative to (your favorite PMX platform here).
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Role of Stan/Torsten for PMX applications

Stan & Torsten development plans

Fast approximate Bayesian methods
Gradient-based marginal optimization (GMO) for marginal
maximum penalized likelihood estimation
Data-streaming variational Bayes via stochastic automatic
differentiation variational inference (ADVI)
Data-parallel variational Bayes via expectation propagation (EP)

Within chain parallel computation
DAEs
PDEs
SDEs
R package to simplify implementation of pharmacometrics models
R package for specialized visualization and reporting of PKPD
model analyses

They will also make it plausible to use Stan for more complex
PBPKPD and QSP modeling applications.
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Additional slides

HMC performance

from RM Neal. MCMC Using Hamiltonian Dynamics (2011) [3]
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Additional slides

HMC performance

from MD Hoffman and A Gelman. The no-U-turn sampler: Adaptively setting path lengths in

Hamiltonian Monte Carlo (2014) [4]
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Additional slides

HMC issues/limitations

Requires calculation of the gradient d log(p(θ|Y ))
dθ

Suitable for sampling of continuous parameters only
Cannot sample discrete parameters
Discrete data is OK as long as the likelihood depends only on
continuous parameters.
Models with discrete parameters, e.g., finite mixture models, can
often be implemented by marginalizing out the discrete parameters.
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