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I Defeating Disease




Defeating Disease: Neuroscience

GABA

http://www.dailymail.co.uk/news/article-3072768/Alzheimer-hope-epilepsy-drug-Tre https://en.wikipedia.org/wiki/ GABAA_receptor
atment-used-reduce-severity-seizures-reverse-memory-loss-tests-rats.html




I Statistics and Modeling: My Early Impressions
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Clinical pharmacology and the choice
between theory and empiricism

Lewis B. Sheiner, MD San Francisco, Calif.




I Empiricism
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I Theory
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LB Sheiner. Clin. Pharmaco I. Ther. 46, 605-615, 1989.




I Informed Empiricism
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Fig. 4. The same as figure 2 for two 30-min infusions
of nicotine as for treatment A, but beginning 3.5 hr
apart (treatment C).
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Fig. 5. Mean heart rate plotted against simulta-
neous mean blood concentrations of nicotine
(hysteresis loops) for treatments A, B and C.
The solid line correspond to the first infusions;
the dashed lines correspond to the second infu-
sions. Arrows indicate the progression of time
during and after nicotine infusion.



| Revised Theory

LB Sheiner. Clin. Pharmacol. Ther. 46, 605-615, 1989.




I Application of the Theory
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Fig. 9. Simulation of HR response (ordinate) to usual daily intake of cigarettes (——) or gum
(- - -) versus time of day. Simulation with model of Fig. 4, fit of Fig. 5, and individual input
functions from Figs. 7 and 8. Left panel, morning—intake begins after ovenight abstinence. Right
panel, evening—input ceases for sleep.

LB Sheiner. Clin. Pharmacol. Ther. 46, 605-615, 1989.




“Thus, by going beyond empiricism and stressing
understanding, not data collection, we not only answer our
first question, but we also gain far more. For clinical
pharmacology, as for all other sciences, the goal is theory,
not data. The pursuit of theory involves both induction
(imagination) and deduction (with subsequent empiric
verification); one is useless without the other. If theory is
kept as the goal, it will not only be more aesthetically
satisfying, but will inevitably lead to insight and technique
applicable far beyond the original locus of study. In short,
and in truth, there is nothing so practical as a good theory.”

LB Sheiner. Clin. Pharmaco I. Ther. 46, 605-615, 1989.



I Diagnostics for Time-Variant Pharmacodynamics
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Figure 1: Model-simulated plasma concentration-effect relationship
of a multiple infusion experiment showing sensitization. The phar-
macodynamic model in this simulation generated an effect which
was proportional to plasma drug concentration and sensitized with
time. Effect and concentration are expressed in arbitrary units. Ar-
rows indicate the sequence of events over time.

MR Gastonguay, SL Schwartz. Pharm. Res. 11, 1825-1828, 1994.
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Figure 3: Pharmacodynamic system analysis of the model-simulated
multiple infusion experiment with sensitization. The entire data set
(0 to 50 minutes) from the multiple hysteresis simulation shown in
Figure 1 was analyzed with ATTRACT. The resulting biophase con-
centration-effect relationship is shown. Effect and concentration are
expressed in arbitrary units. Arrows indicate the sequence of events
over time.




Theory-Driven Science: Influence on My Work
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Bayesian Modeling Design, and Uncertainty & Global Inference in
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Non-Random Dropout

I Design & Empirical Data
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Figure 6. p(Y; > m), Denoted by p(Y [j] > m), for m = 0-3 Versus Dose and Time. See the legend to Figure 5.
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Design & Empirical Data: Confounded E-R
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I Design & Empirical Data: Confounded E-R

Pitfalls in Retrospective Analysis in Search of Concentration-Effect Relationships
Carl Peck, Tom Ludden

Leiden University, The Netherlands, and CDER, FDA, USA 1 994
PAGE 3 (1994) Abstr 867 [www.page-meeting.org/?abstract=867]

Intention-to-treat analysis and the goals of
clinical trials

Lewis B. Sheiner, MD, and Donald B. Rubin, PhD*
San Francisco, Calif. and Cambridge, Mass.

Clin. Pharmacol. Ther. 57, 6-15, 1995. 1 995
Diagnostics for confounding in PK/PD models
for oxcarbazepine

Jerry R. Nedelman'*, Donald B. Rubin? and Lewis B. Sheiner> ™ 2007
Stat. Med. 26, 290-308, 2007.




I Design & Empirical Data: Big Data

British Journal of Clinical Br] Clin Pharmacol (2016) 81 804-806 804
Pharmacology

EDITORIAL

Big Data: Challenges and opportunities for
clinical pharmacology

BICP

Received 29 January 2016; accepted 29 January 2016

David Flockhart', Robert R. Bies®, Marc R. Gastonguay” and Sorell L. Schwartz*




I Big Data: Correlation vs. Causation

Scientists are trained to recognize that
correlation is not causation. Petabytes allow
us to say: ‘Correlation is enough’.

Chris Anderson, 2008

In hiring decisions, what if algorithm predicts that males will be better
employees?

“Models that ignore causation can add to historical problems instead of
addressing them.”

R. Schutt & C. O'Neil.
Doing Data Science.

http://www.nytimes.com/2015/06/26/upshot/can-an-algorithm-hire-better-than-a-human.html 20 1 3 .



I Pharmacometrics: Learning from Other Disciplines
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Figure 1. Multidisciplinary influence on the field of
pharmacometrics.

JS Barrett, MJ Fossler, KD Cadieu, MR Gastonguay. J. Clin. Pharmacol. 48, 632-649, 2008.



Growing the Science: LBS

From: LSheiner <lewis@c255.ucsf.edu>
Subject: Re: BQLs

Date: Tue, 26 Jun 2001 09:32:34 -0700
This has been discussed before

First, let's be clear on what is the "right" thing to do in principle. If you are using ML,
then the right thing to do is use the marginal likelihood, integrating out the "missing
value", that is, if the usual likelihood contribution for datum y is L(y) = p(yl|params), and
y is censored (i.e., known to be < QL, but not known further), then the likelihood
contribution should be L*(y) = p(y<=QL|params) = Integral[p(y|params)dy], where the
integration is from -infinity to QL. In the case of normal residual noise with var =
sigma**2, this would be the CDF of a Standard Normal density (i.e. with mean = zero and
variance = 1) evaluated at (QL-yhat)/sigma, where yhat = E(y|params) -- in fact the "Y"
usually defined in $ERROR.

Here are the two approximations Pete discusses: [detail omitted]

LBS.
http://www.cognigencorp.com/nonmem/nm/99jun262001.html




I Growing the Science: LBS

COURSES ON POPULATION PHARMACOKINETIC DATA ANALYSIS USING
THE NONMEM SYSTEM

BASIC COURSE

Kyoto, Japan (1989),

San Franciso, CA (1990,92,93,95,97)
Lyon, France (1991,93,97,01),
Uppsala, Sweden (1995,99)
Rockville, MD (1998).

INTERMEDIATE WORKSHOP

San Francisco, CA (1992,93,95,97),
Lyon, France (1993,97,01),
Uppsala, Sweden (1995, 99),
Rockville, MD (1998).

BASIC AND INTERMEDIATE LEVEL SHORT COURSE
Uppsala, Sweden (2003)

https://www.page-meeting.org/page/page2006/AlisonBoeckmann.pdf
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I Growing the Science
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I Growing the Science: A Community Responsibility
Models

Tools / Software Training & Courseware

Data Computation

PHARMACOMETRICS

OPEN SCIENCE




I Growing the Science: Open Courseware
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o R Programming
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o Model-Based
Meta-Analysis

o Bayesian
Models/Methods
(BUGS, Stan)




I Growing the Science: Open Courseware
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IOpen Model Repositories

A few examples...

l 'Drug Diseasze Mu-l:lal Rasnurca-s

http://biomodels.caltec http://repository.ddmor
h.edu/static-pages.do? e.eu/models
page=ModelMonth%?2

F2016-07

GitHub

https://github.com/Ope
n-Systems-Pharmacol
ogy/Suite

https://github.com/metr
umresearchgroup/Ope
nBoneMin

L
Bitbucket

https://bitbucket.org/m
etrumrg/alzheimers-dis
ease-progression-mod
el-adascog/wiki/Home
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http://repository.ddmore.eu/models
https://github.com/Open-Systems-Pharmacology/Suite
https://github.com/Open-Systems-Pharmacology/Suite
https://github.com/Open-Systems-Pharmacology/Suite
https://github.com/metrumresearchgroup/OpenBoneMin
https://github.com/metrumresearchgroup/OpenBoneMin
https://github.com/metrumresearchgroup/OpenBoneMin
http://biomodels.caltech.edu/static-pages.do?page=ModelMonth%2F2016-07
http://biomodels.caltech.edu/static-pages.do?page=ModelMonth%2F2016-07
http://biomodels.caltech.edu/static-pages.do?page=ModelMonth%2F2016-07
http://biomodels.caltech.edu/static-pages.do?page=ModelMonth%2F2016-07

Open Model Utility & Impact
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IOpen Data

"Project Data o s i

OpenTrials Spher =

All the Data, on All the Trials, Linked

Open access to clinical data for
new #medicines for human use in
the EU: bit.ly/2ekfyhp

YODA #0penCTData

7:15am - 20 Oct 2016 - Twitter Web Client

Somewhere, something incredible is SRRETWERTE SELNES

waiting to be known. - Carl Sagan
“ 93 v

Login ¥ Sign up FREE

OUR MISSION OUR MODEI REQUEST DATA

$ie IMMPORT

[ED) AvouttmmPort  AccessData  Tools Resources News & Events

Shared Data Access: Open ImmPort - Beta T TT I

Searching for publicly accessible ImmPort study data has just

gotten easier - Open ImmPort is our new beta version shared:
data website with improved search capabilities.

Submitting data to ImmPart? Stay right where you are; this site B S ——
continues to be your data submission portal

& Take Open ImmPort for a test drive

TR

Courtesy Vijay Ivaturi, ACoP 2016.




I Proud History of Open Tools & Open Science

PK-Sim/MoBi
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Torsten

...in large part supported by single individuals or institutions

Adapted from: Brian Corrigan, ACoP 2016.



IWhy Open Science in Pharmacometrics?

CREDIBILITY

SHARED
LEARNING &
INNOVATION

SUSTAINABILITY

INCLUSIVENESS &
ACCESSIBILITY

TRANSPARENCY &
REPRODUCIBILITY

COMMUNITY
BASED
COLLABORATION

QUALITY SCIENCE




I Dr. Lewis B. Sheiner: Learnings

Inform
Empiricism with
Theory

Focus on Theory
as the Goal

Learn from Other | Grow the Science
Disciplines "
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