Comparisons of Multiple Exposure-Response Methodologies in Oncology
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OBJECTIVES | RESULTS

Exposure-Response assessment in oncology is complicated by many factors, e.g. dose ER assessment USing Standard mEthOdS by exposure quarﬁles

delay/reduction. In addition, for monoclonal antibodies (mAbs) exposure is usually
confounded by key prognostic factors for the disease. There are multiple exposure-

response (ER) methodologies, such as direct or indirect (e.g., via tumor growth inhibition — §§'?-’J§28; Covariate HR P-value 95% CI
. . . — Ctrough Q1 0.87 0.47 0.6, 1.26
(TGI)) ER for progression free survival (PFS) and overall survival (OS). Here, we compare — Crougnad Ctigﬁéh 82 079 099 EO 1 1 1)5)
different aspects of multiple direct ER methods, with a case example in oncology. Ctrough Q3 0.55 0.01 (0.34, 0.88)
g Ctrough Q4 0.38 < 0.005 (0.22, 0.67)
S Indicators for Measurable Disease (yes) 1.07 0.72 (0.73, 1.58)
= Tumor burden 1.35 < 0.005 (1.21, 1.5)
s Number of disease sites (>= 3) 1.53 < 0.005 (1.16, 2.02)
SGOT/AST 1.0l < 0.005 (1.01,1.02)
M ETH 0 DS o Brain metastasis 1.74 < 0.005 (1.21,2.51)
Region (W Europe) 0.85 0.33 (0.62, 1.18)
o Region (Other) 1.32  0.06 (0.99, 1.77)
0 1I0 2I0 3I0 410
Comparison of Direct ER methods using an oncology Phase 3 study Morins
« KM indicates a positive ER for overall survival * Cox-proportional Hazard model with covariate adjustment
1. Stratified Kaplan-Meier (KM) estimates by exposure quartiles (AUC_,, Cmin) * Lowexposure appears to underperform * Similar fits Using linear and log-linear functions of exposLire show
> Thi thod i e t ot hich that tounding fact Gent di compared to the control in absence of covariate residuals trends (over/under prediction)
is method is naive to covariates which means that confounding factors e.g. patient disease Correction + Low exposure is no worse than control after adjusting for covariates,
may impact the interpretation of the ER. e Asimilar trend was seen in PFS but are these adjustments made correctly over the range of exposures?
» Makes no assumptions about the hazard function between groups.
2. Cox proportional hazards (CPH) analysis with covariate adjustment by exposure Addressing confounding covariates with exposure

qguartiles or as a continuous function.

» Adjust for confounding covariates but makes a strong assumption about the effect across
exposure range.

» Using conventional tools, exposure as continuous function assumes linear or log-linear ER
relationship but allows simulation of other doses at the same regimen (e.g. 3-weekly).

» Covariate screening is stepwise backward (at a = 0.05) from the set identified from a

* Several key prognostic covariates are confounded with
exposure

 Matching was performed on a large set of covariates
determined by ER and clinical input. Three tiers were

75 -

R o identified:
unl\(arlate screenat a =0.1. , , , , %50- =Z‘1’CN([“8=4488) 1. Likely confounders, stratification variables, and
» Residuals of exposure vs Martingale residuals are used to assess fit of continuous forms of the - .QZfQ;(NLZSO) significant variables per the full model
ER response. . 2. Suspected confounders not identified in tier 1
3. Not likely to be confounders.
3. Case matching (CM) using Propensity scores by exposure quartiles * Match criteria were set with the requirement that Tier 1
» Adjust for confounding covariates [1]. o | | | | | covariates must be balanced to accept the match, but
» Optimal matching based on Propensity scores [2,3] due to their ability to easily deal with 0@ o vﬁe&%‘“\ Vﬁec\‘\@““_eeasewes\_seagew*“ matching on Tier 2 covariates was also prioritized. The final
mixed variable types [4]. e \@iw ““aeasu@“\ed\ o™ match balanced (all standardized differences < 0.2 on both
» Balance between comparator groups was assessed by standardized differences. Tier 1 and Tier 2 covariates.
» Correlation structure was preserved by testing pairwise interaction of covariates between Exposure [ Control Q1 1Q2-4
comparator groups. ! —_
D — No
O - Yes
4. Parametric survival modeling (PS) with covariate adjustment 2 [l
» Longitudinal exposure (plasma compartment or effect compartment) drives the Hazard g o -1 e
function B2 T 40 :
> Allows for flexible forms of the ER function e = T
» Account for dosing history (e.g. dose reduction/delay) Q -CE L ‘ —
» Adjust for confounding covariates but makes an assumption about the effect across exposure o 054 i S
Ol =" = = = = = - - N S S i
range. > _ 1
» Allows simulation including extrapolation to other dosing regimens. % ol
g 1 2 3 4
Time and concentration varying hazard To Exposure quartile
0.0 0.5 1.0 1.5 2.0 2.5
Tumor burden
h(t)=exp| 6, + Z 6;x; + DEFF(t) | (exponential)
! * Covariate correction makes strong assumptions about the « Toinvestigate the degree to which covariate adjustment
( GEffAUCSS linear function of exposure covariatg eff?“ aCross the exposure. range. addressed confounding, we can compare the hazard ratios from
GEff AU . Thef red line is ou.r cqvarlate effect (linear in tumor burder.1) before and after matching to like control patients
155 Emax function of exposure while the green line is the true effect (based on a smoothing  « Each quartile is independently matched to the control, and the
DEFF = 4 QﬁEff+AUCSS spline) final CoxPH model is used to assess HR (i.e., the HR estimate is
91EffC(t) . , * Lack of overlap between Q1 and the control, Q1 and Q2-4 is "doubly robust").
Emax function of concentration exaggerated here for demonstrative purposes
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Simulating expected survival at different doses

CONCLUSION

Eerinm) e e 1.00-
Scenario

* ER in oncology is complicated by many factors, including limitations in estimation 407 g =l
arising from the need to evaluate integrated hazard functions and with large _520_ 50.75- = aaimen D
molecule treatments, exposure confounding with key prognostic covariates. © ®

* Models should be developed with both the goal of effect assessment and simulation § 0. wT
for dose optimization S Regmen G Reginen .§0_50_

 Non-parametric representations of exposure help to assess the true shape with and T 0
without the presence of covariates but are limited with respect to simulation c_%4o' S

e (Causal inference approaches can greatly reduce dependence upon modeling 0'20_ 0'0_25_
assumptions for assessing exposure response

e We propose a M&S strategy that is fit for purpose and provides a clear strategy for 04 MW WI T VI : : 7 e o o
dose optimization if indicated, and addresses regulatory review questions 05 1015 20 250 5 10 15 20 25 Time (months)

Time (months)

. To investigate the effect on PFS of modifying the dose for the * Alog-logistic baseline hazard with an Emax function of plasma
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