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Introduction

Disclosure

Metrum Research Group is actively involved in the development of
open source Stan functionality to support pharmacometrics
applications.
Supported in part by ONR STTR grant N00014-16-P-2039—a
collaboration with Andrew Gelman and members of the Stan team
at Columbia University.
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Why Bayesian?

Why Bayesian?

Pharmacometricians are often called on to leverage prior
knowledge in order to interpret new data and facilitate
decision-making in drug development.

Qualitative prior knowledge is captured in the mathematical form of
a model, i.e., the likelihood function.
Quantitative prior knowledge may be captured in the form of
probability distributions of model parameter values, i.e., prior
distributions.

Add data and you have all the ingredients of Bayesian data
analysis.
With Bayes Rule and suitable computation tools those
components are combined to yield posterior distributions of
model parameters and predictions.
Those distributions permit probabilistic inferences directly relevant
to decision-making.
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Adapting available software

Adapting available software for typical pharmacometric
modeling tasks

Common elements of pharmacometric model-based analyses
PK and/or PD models described in terms of first order ODEs

Some have analytic solutions, e.g., linear 1, 2 and 3 compartment
PK models,
But many require numerical solutions.

Model calculations that depend on a sequence of events
Doses
Changes in covariate values
“Reset” events, e.g., zeroing out the amount in the compartment
representing cumulative renal excretion when urine is collected
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Adapting available software PKPD modeling software

PKPD modeling software
NONMEM: METHOD = BAYES

NONMEM was designed to support pharmacometric applications
involving nonlinear mixed effects models.

Venerable history reaching back to 1980.
Includes a model specification language, a variety of built-in PK
models and numerical ODE solvers that permit specification of
more complex PK and PD models.
Most recent versions (7.*) also include an MCMC method
(Gibbs/Metropolis-Hastings) that allows fully Bayesian analysis.
An HMC/NUTS algorithm is implemented in version 7.4 alpha.
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Adapting available software PKPD modeling software

NONMEM: METHOD = BAYES

NONMEM is primarily designed for nonlinear mixed effects models of
the form

yij ∼ p
(
ŷij |θj ,Xij

)
ŷij = f

(
Xij , θj

)
θi ∼ N

(
θ̂,Ω

)
where yij is observed data for the i th occasion in the j th individual, p is
either a normal or user-specified conditional likelihood, and Xij are
independent variables, e.g., time.

Though version 7.* provides methods for more levels of nested
random effects (normally distributed).
Prior distributions are limited to normal for θ̂ and inverse Wishart
for Ω.
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Adapting available software PKPD modeling software

NONMEM: METHOD = BAYES

Features include:
PREDPP component provides several built-in PK models and
ODE solvers

Linear 1, 2 and 3 compartment models using analytic solutions
General linear compartmental models using numerical calculation
of matrix exponential
General nonlinear compartmental models using numeral solution of
ODEs via DVERK (5th/6th order Runge Kutta), DGEAR (Gear’s
method for stiff ODEs) or LSODA (automatic switching between
methods for stiff and non-stiff problems)

Flexible FORTRAN-like language for specifying the conditional
likelihood
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Adapting available software PKPD modeling software

NONMEM: METHOD = BAYES

Features include:
Event handling

Accommodates complicated event schedules without requiring
custom programming by the user

Parallel computation that takes advantage of the hierarchical
model structure

Allows within chain parallelization
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Adapting available software General purpose Bayesian software

Adapting general purpose Bayesian software
WinBUGS + BUGSModelLibrary

BUGSModelLibrary
(https://bitbucket.org/metrumrg/bugsmodellibrary/) is a PKPD
model library for use with WinBUGS 1.4.3.

Specific linear compartmental models:
One compartment model with first order absorption
Two compartment model with elimination from and first order
absorption into central compartment

General linear compartmental model described by a matrix
exponential
General compartmental model described by a system of first order
ODEs
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Adapting available software General purpose Bayesian software

BUGSModelLibrary

Event handling based on NONMEM/NMTRAN/PREDPP
conventions
Implemented NMTRAN data items include:

TIME, EVID, CMT, AMT, RATE, ADDL, II, SS

Models based on general linear and nonlinear ODEs require user
specification of a rate constant matrix or ODE’s in a template
Component Pascal procedure that must be compiled using the
BlackBox Component Builder 1.5.
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Adapting available software General purpose Bayesian software

Adapting general purpose Bayesian software
Stan

Stan (http://mc-stan.org/) is a general purpose Bayesian modeling
package [1]

General model specification language
Primarily uses a Hamiltonian Monte Carlo (HMC) sampler
(standard HMC or NUTS (no U-turn sampler)). Other methods
include:

Optimization for estimation of posterior modes.
Variational inference for approximate Bayesian inference.

Developed by a team headed by Andrew Gelman of Columbia
University
C++ program available with several interfaces: rstan, PyStan,
CmdStan, MatlabStan, Stan.jl, StataStan, ShinyStan
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Adapting available software General purpose Bayesian software

Stan model specification language

Very flexible model specification language
Imperative language: statements executed in the order in which
they are written.
Computational control structures, e.g., if-then-else, for and while
loops
Large collection of:

Operators
Built-in functions
Probability distributions

User-defined functions
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Adapting available software General purpose Bayesian software

Stan features relevant to pharmacometrics

Functions for numerical solution of ODEs:
integrate ode rk45

Runge Kutta Dopri 4th/5th order algorithm with the implementation
from Boost
Suitable for non-stiff ODEs

integrate ode bdf
Backward differentiation formula (BDF) method with the
implementation from SUNDIALS (CVODES)
Designed for stiff ODEs

There are no built-in handlers for PKPD event
schedules—requires user programming.
HMC/NUTS more efficiently samples the complex,
high-dimensional joint posterior distributions resulting from
nonlinear PMX models.

c©2016 Metrum Research Group Bayesian pharmacometric tools 24 October 2016 15 / 33



Adapting available software General purpose Bayesian software

Stan features relevant to pharmacometrics

Functions for numerical solution of ODEs:
integrate ode rk45

Runge Kutta Dopri 4th/5th order algorithm with the implementation
from Boost
Suitable for non-stiff ODEs

integrate ode bdf
Backward differentiation formula (BDF) method with the
implementation from SUNDIALS (CVODES)
Designed for stiff ODEs

There are no built-in handlers for PKPD event
schedules—requires user programming.

HMC/NUTS more efficiently samples the complex,
high-dimensional joint posterior distributions resulting from
nonlinear PMX models.

c©2016 Metrum Research Group Bayesian pharmacometric tools 24 October 2016 15 / 33



Adapting available software General purpose Bayesian software

Stan features relevant to pharmacometrics

Functions for numerical solution of ODEs:
integrate ode rk45

Runge Kutta Dopri 4th/5th order algorithm with the implementation
from Boost
Suitable for non-stiff ODEs

integrate ode bdf
Backward differentiation formula (BDF) method with the
implementation from SUNDIALS (CVODES)
Designed for stiff ODEs

There are no built-in handlers for PKPD event
schedules—requires user programming.
HMC/NUTS more efficiently samples the complex,
high-dimensional joint posterior distributions resulting from
nonlinear PMX models.

c©2016 Metrum Research Group Bayesian pharmacometric tools 24 October 2016 15 / 33



Adapting available software General purpose Bayesian software

Stan pharmacometrics resources

Torsten: Prototype library of PKPD functions for Stan
Set of Stan functions that replicates the functionality of NONMEM’s
PREDPP library
For details see our poster T-09 “Stan Functions for Bayesian
Pharmacometric Modeling” by Charles Margossian & William R
Gillespie.
Current version of Torsten is available at: https:
//github.com/charlesm93/example-models/blob/feature/

issue-70-PKPDexamples-torsten/PKPD/torsten/README.md
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Adapting available software General purpose Bayesian software

Stan pharmacometrics resources

PMXStan
By Yuan Xiong & Wenping Wang, Novartis
Similar objectives to Torsten
R package + Stan functions
Uses a modified version of LSODA for numerical solution of ODEs
http://discuss.go-isop.org/t/introduction-to-pmxstan

-an-r-library-to-facilitate-pkpd-modeling-with-stan/554

Not yet publicly available (but I understand they’re working on it)
Examples of models written in Stan language

by Sebastian Weber, Novartis
https://github.com/stan-dev/example-models/tree/feature/

issue-72-stan-pkpdlib/misc/pkpd
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Adapting available software General purpose Bayesian software

Torsten: Prototype library of PKPD functions for Stan

Functions in current prototype:
One & two compartment PK models with 1st order absorption

Analytical solutions

Linear compartment model specified as a rate constant matrix
Semi-analytical solution based on matrix exponential

General compartmental model specified as a system of 1st order
ODEs

Numerical solutions
Non-stiff solver: Runge Kutta Dopri 4th/5th order algorithm with the
implementation from Boost
Stiff solver: Backward differentiation formula (BDF) method with the
implementation from SUNDIALS (CVODES)
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Adapting available software General purpose Bayesian software

Torsten PMX functions

Uses NONMEM/PREDPP conventions for data specification and
event handling
Recursive calculation: For each event time calculate the amount
in each compartment given the compartment amounts plus doses
at the previous event time.
Steady-state (SS) currently implemented only for
PKModelOneCpt, PKModelTwoCpt and linCptModel.
A work in progress—more features to come.
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Adapting available software General purpose Bayesian software

Torsten example: PKPD model of drug-induced
neutropenia
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Adapting available software General purpose Bayesian software

Friberg-Karlsson semi-mechanistic model for
drug-induced myelosuppression

PK model: Two compartment model with first order absorption
describing plasma drug concentration on the i th occasion in the j th
subject as a function of time, dose and body weight:

log
(
cij
)
∼ N

(
log
(
ĉij
)
, σ
)

ĉij = f2cpt
(
tij ,Dj , τj ,CLj ,Qj ,V1j ,V2j , kaj

)
Friberg-Karlsson semi-mechanistic model for drug-induced
myelosuppression [2, 3, 4, 5, 6, 7]
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Adapting available software General purpose Bayesian software

Friberg-Karlsson semi-mechanistic model for
drug-induced myelosuppression

dProl
dt

= kprolProl (1 − Edrug)

(
Circ0

Circ

)γ
− ktr Prol

dTransit1
dt

= ktr Prol − ktr Transit1

dTransit2
dt

= ktr Transit1 − ktr Transit2

dTransit3
dt

= ktr Transit2 − ktr Transit3

dCirc
dt

= ktr Transit3 − kcircCirc

Edrug = αĉ

kprol = kcirc = ktr

MTT =
n + 1

ktr

ĉ ≡ plasma drug concentration

Circ ≡ absolute neutrophil count (ANC)

Parameters in red are system
parameters, i.e., drug-independent.
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Adapting available software General purpose Bayesian software

IIV and prior distributions

Inter-individual variation

log
(
CLj ,Qj ,V1j ,V2j , kaj ,MTTj ,Circ0j , αj

)
∼ N

(
log

(
ĈL
(

bwj

70

)0.75

, Q̂
(

bwj

70

)0.75

, V̂1

(
bwj

70

)
, V̂2

(
bwj

70

)
, k̂a,

M̂TT , Ĉirc0, α̂
)
,Ω
)

Prior distributions: moderately informative for PK, strongly informative for system
parameters, weakly informative for drug effect

ĈL ∼ log N (log(10), 0.5) Q̂ ∼ log N (log(15), 0.5) V̂1 ∼ log N (log(35), 0.5)

V̂2 ∼ log N (log(105), 0.5) k̂a ∼ log N (log(2), 0.5)

M̂TT ∼ log N (log(125), 0.2) Ĉirc0 ∼ log N (log(5), 0.2) γ ∼ log N (log(0.17), 0.2)

α̂ ∼ log N
(

log(3× 10−4), 1
)

σ ∼ half-Cauchy (0, 1)

Ω = diag (ω) P diag (ω)

ωi ∼ half-Cauchy (0, 1) , i ∈ {1, 2, . . . , 8} P ∼ LKJCorr (1)
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Adapting available software General purpose Bayesian software

Good convergence and mixing with only 4 chains of
100 warmup and 100 post-warmup samples/chain

parameter mean sd 95% CI n eff Rhat
CLHat 1.30e + 01 2.51e + 00 (8.48e + 00, 1.82e + 01) 400 0.996
QHat 1.76e + 01 4.92e + 00 (9.75e + 00, 2.88e + 01) 400 0.997
V1Hat 4.51e + 01 9.29e + 00 (2.90e + 01, 6.52e + 01) 400 1.000
V2Hat 1.06e + 02 1.61e + 01 (7.81e + 01, 1.38e + 02) 400 0.995
kaHat 2.30e + 00 4.75e − 01 (1.48e + 00, 3.37e + 00) 324 1.004
sigma 9.73e − 02 4.62e − 03 (8.90e − 02, 1.06e − 01) 349 1.003

alphaHat 3.06e − 04 2.99e − 05 (2.46e − 04, 3.66e − 04) 308 0.997
mttHat 1.22e + 02 1.76e + 01 (9.22e + 01, 1.61e + 02) 400 1.002

circ0Hat 5.35e + 00 4.72e − 01 (4.44e + 00, 6.32e + 00) 400 0.993
gamma 1.94e − 01 1.53e − 02 (1.66e − 01, 2.27e − 01) 303 1.009

sigmaNeut 9.92e − 02 5.59e − 03 (8.93e − 02, 1.10e − 01) 400 1.003
omega[1] 5.00e − 01 2.57e − 01 (2.27e − 01, 1.11e + 00) 400 1.003
omega[2] 7.30e − 01 3.08e − 01 (3.67e − 01, 1.59e + 00) 400 1.011
omega[3] 5.83e − 01 2.69e − 01 (2.68e − 01, 1.18e + 00) 400 0.998
omega[4] 3.85e − 01 1.58e − 01 (1.86e − 01, 7.22e − 01) 335 1.005
omega[5] 5.33e − 01 2.49e − 01 (2.18e − 01, 1.07e + 00) 400 1.005
omega[6] 4.10e − 01 1.77e − 01 (2.08e − 01, 8.29e − 01) 310 1.003
omega[7] 2.13e − 01 9.64e − 02 (1.08e − 01, 4.95e − 01) 319 1.005
omega[8] 1.77e − 01 1.17e − 01 (3.95e − 02, 5.02e − 01) 336 0.996
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Adapting available software General purpose Bayesian software

Model fits (posterior median & 90 % CI)
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Pros & cons

Pros & cons: NONMEM

Pros
Flexible model specification language for the conditional likelihood
of an observation
Built-in handlers for event schedules encountered in PKPD data
Good numerical ODE solvers
Support for parallel computations within chain
Steady-state calculations even for ODE-based models
Optimization for estimation of posterior modes

Cons
Restricted stochastic model structure
Very restricted choice of prior distributions
Relatively expensive and not open source
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Pros & cons

Pros & cons: WinBUGS + BUGSModelLibrary

Pros
Flexible model specification language
Many built-in functions and distributions
Built-in handlers for event schedules encountered in PKPD data
Good numerical ODE solvers
Steady-state calculations even for ODE-based models
Freely available

Cons
Limited portability: Windows app. Requires Wine or similar to run
on *nix platforms.
ODE models require writing/compiling a Component Pascal model
Lack of control structures like true loops and if-then-else in BUGS
language
BUGSModelLibrary has not been ported to OpenBUGS or JAGS.
WinBUGS 1.4.3 is not open source
Little or no continued development of BUGS and the BlackBox
Component Builder
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Pros & cons

Pros & cons: Stan
Pros

HMC/NUTS sampler often performs better than the
Gibbs/Metropolis samplers in NONMEM and BUGS
Very flexible imperative model specification language (vs BUGS
declarative language)

Many built-in functions and distributions
Easy to create user-defined functions
Control structures like for loops, while loops, if-then-else
Vector and matrix operators and functions
Can directly specify likelihood without resorting to tricks
Good ODE solvers

Active development program
Freely available and open source

Cons
No built-in PMX models
No built-in handlers for PKPD event schedules
Steady-state calculations for ODE models not readily implemented
These features will be available soon (already available in
prototypes).
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Wish list for Bayesian pharmacometric modeling

Wish list

Flexible general purpose Bayesian software with:
Numerical solvers for

Systems of algebraic equations (root solver)
Differential algebraic equations
Delay differential equations
Stochastic differential equations
Partial differential equations

Approximate Bayesian method(s) that permits parallel
computation, e.g., expectation propagation
Within chain parallel computation for some classes of hierarchical
models
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A posterior distribution

Fan mail from some frequentists
Bayesian (bey’ -zhuhn) n. 1. Result of breeding a statistician with
a clergyman to produce the much sought after “honest statistician”a.
2. One who asks you what you think before a clinical trial in order to
tell you what you think afterwardsb. 3. One who, vaguely expecting a
horse, and catching a glimpse of a donkey, strongly believes he has
seen a mulec.

aanonymous
bS Senn. Statistical Issues in Drug development, 2nd Ed. Wiley, 2008. p.

51.
cibid. p. 46
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