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Why do we care about causal inference?

Why do we build models?

To describe data
“To describe the relationship between Drug X exposure and
response rate“

To make predictions
New dosing, new populations, etc.

For causal inference
“If we were to increase exposure in this population of patients, how
would we expect the response rate to change? “
Mechanistic models are helpful, but we still need to account for
potentially confounding variables
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Why do we care about causal inference?

Causal inference in exposure-response has been a
topic of interest lately . . .
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Why do we care about causal inference?

But causal inference isn’t a new topic . . .

1994
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Why do we care about causal inference?

In all of those examples, exposure is an outcome

When there are predictors of both exposure and response, need to consider
employing tools from the analysis of observational data.
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Motivating example

Motivating (fake-data) example

You are on a drug development team developing a large molecule
(MRG-001) for the treatment of oblivio.

Your team has run one randomized, Phase 2 study comparing a
single dose of MRG-001 to placebo.

The outcome of interest is binary (responder/non-responder)

There are several covariates (X ) that are known to be prognostic
for exposure which may also be predictive of the outcome (Y )
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Motivating example

There is a fairly clear relationship between exposure
and response
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Motivating example

There are some predictors related to both exposure
and response

Variable Placebo Q1 Q2 Q3 Q4
N 100 50 50 50 50
response 0.32 0.32 0.46 0.64 0.52
exposure 0 2.43 3.11 3.61 4.9
C1 39.6 34.9 31.3 37.8 37.4
C2 70.8 77 69.4 64.9 61.3
C3 957 1440 1160 1010 994
C4 36.1 33.3 35.7 37.2 36.3
C5 19.4 26.8 26 16.9 20.3
F1 0.57 0.26 0.46 0.56 0.78
F2 0.42 0.6 0.5 0.52 0.5
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Motivating example

Questions of interest

What is your estimate of the effect of exposure for this population
as a whole?

What is your estimate of the effect of exposure in patients with low
exposure?

These questions relate to estimating the causal effect of exposure on
response.

Techniques such as case-matching (case-control) analyses aren’t ideally
suited to answer these questions.
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Causal inference roadmap

A general roadmap for causal questions

1 Specify knowledge about the system to be studied using a causal
model

2 Specify the observed data and their link to the causal model
3 Specify the target causal quantity
4 Assess identifiability
5 State the statistical estimation problem
6 Estimate
7 Interpret

Peterson and van der Laan, Epidemiology, 25(3) 418-426, 2014
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Causal inference roadmap

Specifying knowledge about the system

Encoding what we know (and don‘t know) in a causal graph can be an important
first step.

Correlations between error terms (UE ,UR ,UP ) may be induced by unmeasured
variables.

Assessing the potential impact of unmeasured confounders (Nedelman et al., 2007)
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Causal inference roadmap

Potential outcomes and the assignment mechanism

Let Yi(e) be the potential outcome for patient i at exposure
(E) = e

Yi(e) is the outcome we would observe if a patient i had E = e
We typically only observe Yi(e) for one (or a few) values of e
Counterfactual potential outcomes are the values of Yi(e) that we
don’t observe

The assignment mechanism is the (stochastic) process that
assigns exposure

For a concentration-controlled trial, this is completely random
For a dose-controlled trial, it may depend on observed (and/or
unobserved) covariates
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Causal inference roadmap

Causal effects are differences in potential outcomes

We will define individual causal effects in terms of differences in
potential outcomes

Causal effect at E = e : Yi(e)− Yi(0)
But, we’ve only observed Y (e) for one value of e

So, we will calculate the population causal effect
The expected difference between the mean response at E = e and
E = 0
Expectation is taken with respect to the distribution of X

Conditioning on X this is
EY (Y |X = x ,E = e)− EY (Y |X = x ,E = 0)

If we average over the distribution of X, this is
EX [EY (Y |X = x ,E = e)− EY (Y |X = x ,E = 0)]

c©2016 Metrum Research Group LLC ACoP, Bellevue, WA, 2016 October 24, 2016 16 / 26



Causal inference roadmap

Calculating the population (average) causal effect

ACE = EX [EY (Y |X = x ,E = e)− EY (Y |X = x ,E = 0)]

=
∑

x

{EY (Y |X = x ,E = e)− EY (Y |X = x ,E = 0)}p(X = x)

The probability distribution for X comes from the population of focus.
Enrolled population
Low exposure patients

We estimate population causal effect as

ÂCE =
1

npop

∑
i∈P

ÊY (Y |X = xi ,E = e)− ÊY (Y |X = xi ,E = 0)
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Causal inference roadmap

Causal effects should be model-independent

ACE = EX [EY (Y |X = x ,E = e)− EY (Y |X = x ,E = 0)]

The definition of causal effects does not depend on any particular
model.

It could be calculated using
parametric or non-parametric regression model
machine learning
model averaging
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Motivating example redux

How does this relate to the motivating example?

Given the graphical model and causal effect of interest, we’re ready to
make inference.

→

ACE = EX [EY (Y |X = x ,E = e)− EY (Y |X = x ,E = 0)]
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Motivating example redux

Estimated exposure-response model

Suppose we’ve arrived at the following model:

Yi ∼ Bernoulli(pi)

Xi = (C1i ,C2i ,C3i ,C4i ,C5i ,F1i ,F2i)

logit(pi) = BSLi +
Emaxi Eθ8

i

E50θ8 + Eθ8
i

BSLi = θ0 + θ1C1i + θ2C2i + θ3C3i + θ4F1i

Emaxi = θ5 + θ6C1i + θ7C2i
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Motivating example redux

Model-predicted difference from placebo
E(Y |X = reference,E = e)− E(Y |X = reference,E = 0)
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Motivating example redux

Average casual effect in different populations
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Odds and ends

A few odds and ends

There are many important details (and assumptions) of causal inference
that I’ve skipped over!

I have presented one simple example of using the formal framework of
causal analysis in pharmacometrics

A randomized dose ranging design could have helped dramatically
Other models could have been used instead of logistic regression

“Estimation procedures should be tailored to provide high-quality answers to
questions of scientific interest“ – Gruber & van der Laan

As M&S scientists move toward using observational databases (e.g.,
EHR), causal tools will be increasingly more important.
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Summary

Summary

Exposure is an outcome

Think about causal effects in terms of potential outcomes.

In order to make clear causal inference, we should define a target
causal quantity (and population) of interest.
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Summary
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Summary
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