Population Pharmacokinetic and Pharmacodynamic Analysis of Buprenorphine for the Treatment of Neonatal Abstinence Syndrome

Jason N. Moore(1), Marc Gastoniuay(2), Susan Adeniyi-Jones(3), David E. Moody(4), Walter K. Kraft(1)

(1) Thomas Jefferson University – Department of Pharmacology and Experimental Therapeutics, Philadelphia, PA; (2) Metrum Research Group, Tariffville, CT; (3) Thomas Jefferson University/Nemours, Philadelphia, PA; (4) University of Utah, Salt Lake City, UT.

Introduction

Neonatal abstinence syndrome (NAS) is a condition affecting newborns exposed to an opioid in utero. Symptoms of NAS include excessive crying, poor feeding, and disordered autonomic control. Up to 2/3 of infants will require pharmacologic therapies to reach symptom control. Opioids including morphine and methadone are the current first-line treatments. Buprenorphine is being investigated as a treatment for NAS. The purpose of this analysis was to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) of buprenorphine/norbuprenorphine in NAS.

Methods

The Buprenorphine OR Neonatal morphine solution (BORM) trial (NCT01452785) was a double-blind, double-dummy, randomized, controlled trial that assessed the efficacy of buprenorphine and morphine in NAS. Blood was analyzed from patients who received buprenorphine. All infants were monitored using the MOTHER NAS Scale, a modified Finnegan scoring instrument. Term infants were treated for NAS if they had scores \(\geq 4 \) or a single score \(\geq 12 \). The neonates allocated to the buprenorphine group were treated with sublingual buprenorphine 3.5 mg/kg every eight hours. Doses were titrated by 25% for inadequate symptom control up to a maximal dose of 20 mg/kg. When the infant was stabilized, the dose was tapered at a rate of 10% daily until within 10% of the starting dose. Blood for PK analysis was drawn in all study patients using a sparse sampling regimen. Buprenorphine and norbuprenorphine concentrations were analyzed using liquid chromatography/mass spectrometry. The limit of quantification was 0.1 ng/mL for both buprenorphine and norbuprenorphine.

The data were used to validate and adapt an existing model of buprenorphine PK in neonates (Moore CM, Pharmacotherapy, 2015 Jul;35(7):870-80; PMID 26172282). This reference model utilized a 2-compartment model with PK parameters scaled allometrically by weight and maturation functions on clearance and peripheral volume of distribution. The model was then extended to norbuprenorphine. Norbuprenorphine formation was modeled as a fraction of previously established clearance of buprenorphine given the potential for buprenorphine to be metabolized by multiple pathways. The metabolite PK parameters were also scaled by weight allometrically. The buprenorphine/norbuprenorphine data were analyzed against the NAS scores to identify potential PD relationships. The knowledge of the relationship was used to link the PK to a PD model of NAS.

Results

The goodness-of-fit (GOF) plots demonstrate that the model was generally able to describe the data well.

Conclusions

- The findings confirm an existing PK model of buprenorphine in neonates and extend the model to describe the PK of norbuprenorphine and the PD of buprenorphine in NAS.
- This is the first PD model of a drug effect in NAS. It appeared to well describe relevant features of the NAS disease course.
- Exposure to buprenorphine was linked to stabilization of NAS. The inverse of exposure appeared to be the primary driver of clinical efficacy.

Future Directions

- This PK-PD model can be used to simulate dose regimens which may facilitate quicker stabilization or less frequent dosing.

Acknowledgements

The study was funded by National Institute on Drug Abuse (R01DA029781). At the time the research was performed, J. Moore was supported by National Institutes of Health Postdoctoral training grant no. T32DA0083162. Indira supplied buprenorphine, but was not involved in the study design, data collection, analysis, interpretation, or past preparation.