Multiscale Systems Biology / Pharmacology Models (Figure 1)
- Multi-scale systems approach to pharmacology
- Serve as a link between preclinical investigation (e.g., disease, genetic variation)
- Multi-system physiology model (MSPM) includes pharmacologic effects

MSPM of Bone Mineral Homeostasis and Remodeling (Remodeling, Figure 2)
- Calcium homeostasis in bone remodeling
- Bone turnover marker (BTMs):
 - Bone-specific alkaline phosphatase (BSAP)
 - C-terminal telopeptide of type I collagen (CTx)
 - Total hip bone mineral density (BMD)
- Osteoclast activity:
 - RANKL–RANK receptor interaction
 - Integrins, matrix metalloproteinases (MMPs)
- Osteoblast activity:
 - TGF-beta (e.g., TGF-beta-1, TGF-beta-2, TGF-beta-3)
 - Parathyroid hormone (PTH)
- Pharmacologic effects:
 - Calcitriol (active Vitamin D)
 - Cytokines (e.g. TGF beta)
 - GnRH receptor modulators

RESULTS – MSPM QUALIFICATION USING CLINICAL DATA: From Two Randomized, Double-Blind, Placebo-controlled, Multi-dose Studies
- MSPM predictions were in close agreement with observed data: Mean absolute percentage error=9.1%; Mean percentage error=-7.9%

METHODS – MSPM DEVELOPMENT: BSAP, CTx, BMD
- BSAP and CTx were modeled using nonlinear mixed-effects models (NLMEM)
- The MSPM was extended to include BMD changes and was validated using data from denosumab clinical trials

DISCUSSION
- The MSPM was validated using data from two independent clinical trials

REFERENCES